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Abstract 
Human face tracking (HFT) is one of several technologies 
useful in vision-based interaction (VBI), which is one of 
several technologies useful in the broader area of 
perceptual user interfaces (PUI). In this paper we 
motivate our interests in PUI and VBI, and describe our 
recent efforts in various aspects of face tracking in the 
Interaction Lab at UCSB. The HFT methods (GWN, EHT, 
and CFD), in the context of VBI and PUI, are part of an 
overall “TLA approach” to face tracking. 
 

TLA /T-L-A/ n.  [Three-Letter Acronym] 1. Self-
describing abbreviation for a species with which 
computing terminology is infested. 2. Any 
confusing acronym…. (From the Jargon File v. 
4.3.1) 

 

1 Introduction: Perceptual interfaces 
The interface between people and computers has 
progressed over the years from the early days of switches 
and LEDs to punched cards, interactive command-line 
interfaces, and the direct manipulation style of graphical 
user interfaces. The “desktop metaphor” of graphical user 
interfaces, a.k.a. WIMP interfaces (for Windows, Icons, 
Menus, and Pointing devices), has been the standard 
interface between people and computers for many years. 
Of course, software and technology for human-computer 
interaction (HCI) is not isolated from other aspects of 
computing. Computers have changed enormously over 
their short history, increasing their speed and capacity, 
and decreasing component size, at an astounding rate. The 
size of computers is shrinking, and there are now a 
plethora of computer devices of various sizes and 
functionality. In addition, there are many non-GUI (or 
“post-WIMP”) technologies, such as virtual reality, 
speech recognition, computer vision, haptics, and spatial 
sound, that promise to change the status quo in computer-
human interaction.  

One can view human-computer interaction as a 
hierarchy of goals, tasks, semantics, and syntax, as shown 
in Figure 1. The goal level describes what a person wants 
to do, independent of the technology – talk with a friend, 
for example. Tasks are the particular actions that are 

required to attain the goal – e.g., locate a telephone, dial a 
number, talk into the headset. The semantics level maps 
the tasks onto achievable interactions with the 
technology, while the syntax level specifies the particular 
actions (such as double clicking an icon) that accomplish 
a subtask. 

One may view user interfaces as a necessary evil, 
because they imply a separation between what one wants 
the computer to do and the act of doing it [11], i.e., a 
division between the goal level and the task, semantics 
and syntax levels. This separation imposes a cognitive 
load upon the user that is in direct proportion to the 
difficulty and awkwardness that the user experiences. 
Poor design, to be sure, exacerbates the problem, giving 
rise to the all-too-common experience of frustration when 
interacting with computers. 

This frustrating user experience can certainly be 
improved upon in many ways, and there are many ideas, 
initiatives, and techniques intended to help – such as user-
centered design, 3D user interfaces, conversational 
interfaces, intelligent agents, virtual environments, and so 
on.   

One point of view is that direct manipulation 
interfaces, such as the GUI/WIMP model, where users 
manipulate visual representations of objects and actions, 
and “information appliances” [8], which are devices built 
to do one particular task well, will alleviate many of the 
problems and limitations of current computer interfaces. 
Although this is very likely true – and such devices may 
well be commercial successes – it is not clear that this 
interface style will scale with the changing landscape of 
form factors and uses of computers in the future. 

To complicate things, it is no longer obvious just 
what “the computer” is; the largely stand-alone desktop 
PC is no longer the singly dominant device. Rapid 
changes in form factor, connectivity, and mobility, as 
well as the continuing effects of Moore’s Law, are 
significantly altering the computing landscape. More and 
more, computers are embedded in objects and systems 
that people already know how to interact with (such as a 
telephone or a child’s toy) apart from their experience 
with stand-alone computers. 

So what might replace, or at least complement, the 
current HCI paradigm? In recent years, some have argued 



that the primary abstraction between people and 
technology should be the model of human-human 
interaction. The most natural human interaction 
techniques are those which we use with other people and 
with the world around us – those that take advantage of 
our natural sensing and perception capabilities, along with 
social skills and conventions that we acquire at an early 
age.  We would like to leverage these natural abilities, as 
well as our tendency to interact with technology in a 
social manner [9], to model human-computer interaction 
after human-human interaction.  Perceptual user 
interfaces (PUI), which seek to take advantage of both 
human and machine perceptual capabilities, may be 
defined as highly interactive, multimodal interfaces 
modeled after natural human-to-human interaction, with 
the goal of enabling people to interact with technology in 
a similar fashion to how they interact with each other and 
with the physical world [10]. Figure 2 depicts related 
terms and the flow of information in PUI. 

Such interfaces must integrate in a meaningful way 
several relevant technologies, such as speech, vision, 
natural language, haptics, and reasoning, while seeking to 
understand more deeply the expectations, limitations, and 
possibilities of human perception and the semantic nature 
of human interactions. 

 

2 Vision based interaction 
Present-day computers are essentially deaf, dumb, and 
blind. Several people have pointed out that the bathrooms 
in most airports are smarter than any computer one can 
buy, since the bathroom “knows” when a person is using 
the sink or toilet. Computers, on the other hand, tend to 
ask us questions when we’re not there (and wait 16 hours 
for an answer) and decide to do irrelevant (but CPU-
intensive) work when we’re frantically working on an 
overdue document. 

Vision is clearly an important element of human-
human communication. Although we can communicate 
without it, people still tend to spend endless hours 
traveling in order to meet face to face. Why? Because 
there is a richness of communication that cannot be 
matched using only voice or text. Body language such as 
facial expressions, silent nods and other gestures add 
personality, trust, and important information in human-to-
human dialog. We expect it can do the same in human-
computer interaction. 

Vision based interfaces (VBI) is a subfield of 
perceptual interfaces which concentrates on developing 
visual awareness of people. VBI seeks to answer 
questions such as: 
� Is anyone there? (Detection) 
� Where are they? (Location, tracking) 
� Who are they? (Identity recognition) 
� What are the subject’s movements? (Motion 

tracking and analysis) 
� What are his facial expressions? (Expression 

analysis) 
� Are his lips moving? (Lip modeling and 

tracking) 
� What gestures is he making? (Gesture 

recognition) 
These questions can be answered by implementing 

computer vision algorithms to locate and identify 
individuals, track human body motions, model the head 
and face, track facial features, interpret human motion 
and actions. (For a taxonomy and discussion of 
movement, action, and activity, see Bobick [1]). 

VBI (and, in general, PUIs) can be categorized into 
two aspects: control and awareness. Control is explicit 
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Figure 2: Information flow in Perceptual User Interfaces 
(adapted from [10]) 



communication to the system – e.g., put that object there. 
Awareness, picking up information about the subject 
without an explicit attempt to communicate, gives context 
to an application (or to a PUI). The system may or may 
not change its behavior based on this information. For 
example, a system may decide to stop all unnecessary 
background processes when it sees me enter the room – 
not because of an explicit command I issue, but because 
of a change in its context. Current computer interfaces 
have little or no concept of awareness. While many 
research efforts emphasize VBI for control, it is likely 
that VBI for awareness will be more useful in the long 
run. 

3 Human face tracking 
Of the various VBI technologies, human face tracking 
(HFT) is perhaps the most useful, as it can be used to 
support several other technologies as well as be used 
directly by various applications. Face tracking can serve 
as input to various other VBI modules, such as dynamic 
face recognition, facial expression analysis, audio-visual 
speech processing, body tracking and modeling, gesture 
recognition and activity analysis. The location, pose, and 
expression of the face is key to both extracting and 
interpreting human body information. Since faces are 
arguably the most stable and identifiable component of 
the body under various transformations, the face can 
serve as an anchor from which to relate other VBI tasks. 
Additionally, an understanding of face pose or expression 
can be vital to interpret high-level information such as 
facial identity or body gesture. 

Face tracking may also be considered a prototype 
computer vision problem, since the difficulties 
encountered are quite similar to other difficult tracking 
problems in the field – there are both rigid and non-rigid 
components, there is both similarity and variation among 
members of the class of objects, there are time-varying 
changes that impact the problem, etc. There is an 
expectation that by focusing on face tracking we will 
contribute to the state-of-the-art in general visual object 
tracking as well. 

In this section, we present approaches to three 
different problems in face tracking. These are the first 
steps in working toward a unified approach to tracking 
human faces for various applications. 

 

3.1 Gabor Wavelet Networks for face tracking 
In this section, we will show how to perform efficient 
face tracking using Gabor Wavelet Networks (GWN) [7]. 
We start by presenting the GWN approach, which is used 
to represent a face image as a weighted sum of 
specifically chosen Gabor wavelets. We then introduce 
the wavelet subspace tracking method [5] and discuss its 

main advantages and drawbacks over other related 
approaches. 
 

3.1.1 Compression as Learning 

To define a GWN, we start out by considering a family of 
N odd Gabor wavelets },...,,{Ψ nnn 21 N
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where x represents image coordinates and 
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iiii yxiyxi ccss θ=n  are wavelet parameters which 

defines the wavelet scale ),(
ii yx ss , orientation θi and 

translation ),(
ii yx cc . These parameters are implicit in the 

equation and compose the dilation matrix Si, the rotation 
matrix Ri and the translation vector ci. 

The choice of N is related to the degree of desired 
representation precision of the network. In order to learn 
the parameters of a GWN for a discrete gray level image 
I, the energy functional 
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is minimized with respect to the weights wi and the 
wavelet parameter vectors ni. The two vectors 
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then the Gabor wavelet network (Ψ, w) for image I. In 
other words, a Gabor wavelet network is defined through 
a N-dimensional vector of weights wi and an N-
dimensional vector of Gabor wavelets Ψni, where the 
weights wi and the parameter vectors ni are chosen such 
that the weighted sum of Gabor wavelets approximates 
the discrete image I optimally. 

Clearly, the quality of the image representation and 
reconstruction depends on N, the number of wavelets, and 
can be varied to reach almost any desired precision.  

We note here that the weights of a GWN can be 
computed directly using a family of dual functions. Gabor 
wavelet functions are not orthogonal, thus implying that, 
for a given family Ψ of Gabor wavelets, it is not possible 
to calculate a weight wi by a simple projection of the 
Gabor wavelet Ψni onto the image. In fact, a family of 

dual wavelets }~,...,~,~{~
21 NnnnΨ ψψψ=  has to be 

considered. The wavelet 
inψ~  is the dual wavelet of the 

wavelet 
jnψ~  iff jiji ,

~,~ δψψ =〉〈 nn . So, given a discrete 

image I, the optimal weights of the GWN that minimize 



the energy in Eq. (2) are given by 〉〈=
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3.1.2 Wavelet subspace tracking 

As mentioned above, a discrete image I can be mapped 
into a vector Nℜ∈w , using a family of dual functions 
Ψ~ . This mapping corresponds to the orthogonal 
projection of the image I into the subspace <Ψ>. 
Similarly, the image reconstruction Î , i.e., the mapping 
of w into the image space, is obtained using the family of 
wavelets Ψ. Figure 3 better illustrates these mappings. 
 

 
 

Figure 3: Wavelet subspace mapping. 
 

The basic idea of the wavelet subspace tracking 
consists in orthogonally projecting the input video frames 
into the image subspace <Ψ>, while performing all 
further computations in the low-dimensional wavelet 
subspace Nℜ . Therefore, tracking is achieved based on 
wavelet weights, eliminating the time-consuming 
pixelwise difference computation in image-based 
approaches. It is interesting to note that the weights of the 
GWN are linearly related to the local Gabor filter 
responses and thus also reflect the underlying local image 
structure.    

To discuss this method in more detail, let us consider 
a GWN (Ψ, v) that is optimized for a certain face image. 
As previously mentioned, the optimal weight vector v can 
be directly obtained by an orthogonal projection of the 
facial image into the closed linear span of Ψ. Hence, we 
say that the face template was mapped into the weights 

Nℜ∈v  which we will call reference weights. 
The tracking in wavelet subspace is performed by 

affinely deforming the subspace <Ψ>, until the weight 
vector Nℜ∈w , obtained by the orthogonal mapping of 
the current frame into this subspace, is closest to the 
reference weight vector v. In order words, for each frame 
I, we need to minimize the following energy functional, 
with respect to the affine parameter vector 

),,,,,( yxxyyx ccsss θ=n : 
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The mapping of images into Nℜ is carried out with 
low computational cost through a small number of local 
filtrations with the wavelets. As we can see in equation 
(3), the weights iw are computed by a linear combination 
of filter responses, since matrix A is constant (except by a 
scale factor) and can be computed offline. 

Figure 4 shows some video frames where the face is 
tracked by the wavelet subspace method. Facial features 
(eyes, nose and mouth) are marked at relative coordinates, 
just to show the face position and orientation.  The image 
resolution is 160x120 pixels and the size of the inner face 
region in which the GWN was optimized is 50x65 pixels. 
Using only nine wavelets, the computing time for each 
Levenberg-Marquardt cycle (used to minimize Eq. 3) was 
15ms on a 1GHz Linux-Athlon.  
 
 
 
 
 
 

Figure 4: Sample frames showing the wavelet 
subspace tracking. 

 

3.1.3 Discussion 

Although the face is represented as a rigid object 
undergoing limited motion, different face expressions and 
small depth variations exhibited by facial features are 
well approximated by the affine wavelet model. 
Furthermore, since Gabor wavelets are DC free, the 
approach also shows robustness with respect to 
homogeneous illumination variations. On the other hand, 
the method fails under strong intensity changes and out-
of-plane face deformations. 

Increasing the number of wavelets in the 
representation leads to a more precise but slower tracking. 
For instance, using 51 wavelets, a computing time of 
85ms per cycle was required in each frame. Clearly, the 
number of applied wavelets is task dependent and can be 
dynamically changed according to the available computer 
power. 

GWNs invite the closest comparison with the well-
known Gabor jet approach, which has also been used for 
real-time tracking. The advantage of GWNs is that they 
offer a sparser representation of image data. This is 
because the wavelet parameters are selectively chosen 
from the continuous space, in contrast with the Gabor jet 



approach, which is based on the discrete wavelet 
transform. As an example, considering just 52 wavelets, 
GWNs provide a good representation for a face image, 
whereas the Gabor jet approach would require many more 
wavelets to get a comparable representation. 

Finally, we should note the work of Hager and 
Belhumeur [6], which also uses an affine model to track 
the face. This approach has the advantage of being even 
faster than GWN tracking. On the other hand, the GWN 
approach avoids the discrete data interpolation required in 
the former, since, in this case, we deal with a continuous 
wavelet representation.  
 

3.2 Integrating multiple cues in face tracking 
Birchfield [2] proposed a robust head tracker by using 
boundary intensity gradients and skin color histograms. 
The tracker can deal with full 360-degree rotation and 
occlusion, but it demands a motion predicting model and 
an exhaustive search. It is hard to predict the head’s 
motion by using a fixed motion model, and an exhaustive 
search is computationally costly.  

Bradski [3] introduced a mean shift algorithm to find 
an optimal search path for tracking without a motion 
model. Mean shift is a robust nonparametric optimization 
technique based on probability distribution, in which the 
optimal solution is sought by climbing density gradients. 
Recently Comaniciu and Meer [4] used mean shift for 
non-rigid objects tracking. In their approach, the object’s 
appearance varies little during tracking, so the tracker 
doesn’t work well in the case of large rotation of the head 
or significant view variation.  

We have developed a real-time robust head tracker 
based on a simple elliptical shape and an adaptive target 
color distribution similar to Birchfield’s. Our Elliptical 
Head Tracker (EHT) method is composed of two parts. 
First, color (hue) is used to estimate the head’s location in 
every frame, in which mean shift is adopted for optimal 
search. The hue is modified adaptively so that it can deal 
with the head’s rotation or large view changes. After 
color mean shift tracking, a local search is performed to 
maximize the normalized gradient magnitude around the 
boundary of the elliptical head, in order that more 
accurate head location and scale can be obtained.  
Experimental results show that it is a real-time tracker 
and relatively robust to clutter, scale variation, brief full-
occlusion, full 360-degree rotation and camera motion. 

The head shape is modeled as an ellipse with a fixed 
aspect ratio of 1.2.  From the tracked ellipse, the motion 
and pose parameters are extracted, including the position 
(x, y) and scale s (which is proportional to z, the distance 
from the camera) and in-plane rotation angle θ. That is, 
the state of an ellipse is described as state ϕ=(x, y, s, θ).  

In the head tracking work of Birchfield [2], an ellipse 
is searched for in a window exhaustively. By using the 

mean shift color tracking, we already have the position 
and rotation parameter. We can also calculate the long 
and short axis of the ellipse by computing the eigenvalues 
and eigenvectors of the tracked region. But this value is in 
fact not the real shape of the head, especially when there 
is clutter. In order to produce an accurate tracking result, 
gradient information around the boundary of the elliptical 
head is used.  Now given the elliptical head’s state  (x, y, 
θ), to obtain the best scale s*, a local search is performed 
to maximize the average of the gradient magnitude 
around the perimeter of the ellipse.                             
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where sig  is the intensity gradient at perimeter pixel i of 

the ellipse at scale s, and hN  is the number of pixels on 
the perimeter of the ellipse. 

3.2.1 Experiments 

Two sets of experiments were performed on our tracking 
algorithm, comparing the performance of our head tracker 
with Birchfield’s.  Images from three different head 
motion tracking segments are shown in Figure 5. The 
dark (red) ellipse is the result of our implementation of 
Birchfield’s tracker, while the white ellipse is the result of 
our tracker. The results indicate that our method is more 
stable in large motion and the head shape is more 
accurate. The tracker works in real-time and is relatively 
robust to occlusion, rotation, and scale variations. 

3.3 Low-resolution face pose evaluation 
The goal of this work is to coarsely track the head 
orientation of multiple people in a scene in real-time, with 
input from any number of cameras. Head location and 

 

 

 
 

Figure 5: Elliptical head tracking experiments 



tracking are performed via color-based skin tracking and 
feature location based on non-skin areas within the face. 
A rough estimate of the subject’s viewing direction is 
computed using statistics on the skin pixel positions 
within the head region. 

Figure 6 shows the Coarse Face Direction (CFD) 
system locating and tracking two faces, while Figure 7 
shows statistics computed over the face regions. We are 
currently working on fast mechanisms to estimate face 
orientation based on these simple statistics. Preliminary 
results are promising; as the graphs in Figure 6 show, 
there is a clear relationship between the four statistical 
measures and head orientation (pan angle). The x-
coordinate corresponds to frame number of a sequence 
taken of a person panning from left to right. 

This will be used to evaluate the general gaze 
directions of audiences, both large and small. 

4 Discussion 
Perceptual interfaces, modeled after human-to-human 
interaction, may enable people to interact with technology 
in ways that are natural, efficient, and easy to learn.  A 
semantic understanding of application and user semantics, 
which is critical to achieving PUI, can enable a single 
specification of the interface to migrate among a diverse 
set of users, applications, and environments, transforming 
the way that interfaces are designed and built. 

A perceptual interface does not necessarily imply an 
anthropomorphic interface, although the jury is still out as 
to the utility of interfaces that take on human-like 
characteristics.  It is likely that, as computers are seen less 
as tools for specific tasks and more as part of our 
communication and information infrastructure, combining 
perceptual interfaces with anthropomorphic 
characteristics will become commonplace. 

The research agenda for perceptual interfaces must 
include both (1) development of individual components, 
such as speech recognition and synthesis, visual 
recognition and tracking, and user modeling, along with 
(2) integration of these components.  A deeper semantic 
understanding and representation of human-computer 
interaction will have to be developed, along with methods 
to map from the semantic representation to particular 
devices and environments.  In short, there is much work 
to be done.  But the possible benefits are immense. 

Relevant vision-based interaction technologies 
include human tracking, analysis, and recognition with 
respect to heads, faces, hands, and whole bodies. We 
presented some of our recent work in different approaches 
to face tracking: precise feature-based tracking, general 
color-and-gradient based tracking, and fast coarse face 
orientation. These are ongoing research projects with 
several intended applications. 
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Figure 7: Statistics on skin pixels within the face region, as an approximate function of head rotation 
(pan): (a) Standard deviation of skin pixels in x. (b) Standard deviation of skin pixels in y. (c) Skewness of 
skin pixels in x. (d) Skewness of skin pixels in y.  

 
 
Figure 6: Two faces located via skin color tracking; the 

estimated locations of facial features are displayed. 


