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Abstract—In this paper we address the problem of unsu-
pervised discovery of action classes in video data. Different
from all existing methods thus far proposed for this task, we
present a space-time link analysis approach which matches the
performance of traditional unsupervised action categorization
methods in a standard dataset. Our method is inspired by the
recent success of link analysis techniques in the image domain. By
applying these techniques in the space-time domain, we are able
to naturally take into account the spatio-temporal relationships
between the video features, while leveraging the power of graph
matching for action classification. We present an experiment to
demonstrate that our approach is capable of handling cluttered
backgrounds, activities with subtle movements, and video data
from moving cameras.

I. INTRODUCTION

How to automatically discover and recognize activities
from video data is an important topic in computer vision. A
solution to this problem will not only facilitate applications,
such as video retrieval or summary, but will also improve,
e.g., automatic video surveillance systems [1] and human-
machine/robot communication [2]. In addition to its impor-
tance for many practical applications, unsupervised action
categorization is important in the context of machine learning,
particularly on how video processing approaches could allow
a high-level ”understanding” of the data.

Numerous techniques have been proposed to solve the
action classification problem [3]. The requirements of video
analysis techniques are manifold, such as dealing with clut-
tered background, camera motion, occlusion, geometric and
photometric variability, etc. [4], [5], [1]. Recently, unsuper-
vised methods based on bag of visual words have become
very popular as they could achieve excellent performance in
standard datasets [6] and long surveillance videos [1], [7].

Generally, these unsupervised algorithms extract spatio-
temporal feature descriptors called video words and then
use document-topic models such as pLSA [8], LDA [9], or
HDP [10] to discover latent topics [1], [7], [5]. A common
limitation of these models is that they usually do not consider
spatio-temporal correlations among visual words unless the
correlations are represented explicitly [6]. Another general
limitation is that some of these methods are EM-based learn-
ing approaches which makes recursive learning and updating
difficult.

In this paper we introduce link analysis-based techniques
to unsupervised activity discovery in video data that natu-

rally preserves the spatio-temporal topology among the video
words. Link analysis techniques are known from data mining,
the information retrieval research communities, and the WWW
[11]. They were largely ignored in computer vision until their
recent introduction to the community by Kim et al. [12], who
applied link analysis to unsupervised image clustering with
impressive results.

The first step of our approach is to extract spatio-temporal
features from the video data. Then, we construct a visual
similarity network (VSN) [12] by computing the pairwise
similarity between the features. Next, the VSN is analyzed by
using the link analysis techniques, PageRank [11] and structure
similarity (SS) [13], to produce an affinity matrix between
all video sequences. Here, we interpret the pairwise matching
weights as votes for the importance of the nodes which
allows a quick division between consistent nodes and irrelevant
ones (e.g., those from the background). Eventually, spectral
clustering is applied to the affinity matrix to identify potential
action categories. Link analysis techniques have been shown to
be able to detect consistent matches (hubs) very effectively and
efficiently [11], [12], [14], [15]. All computation and inference
is done on the link weights between the nodes in the VSN
which makes it fast and efficient. The key contributions of
our work is that we extend link analysis techniques to the
spatio-temporal domain and show that unsupervised discovery
of action classes can greatly benefit from such approach and
report results that match or exceed the performance of the
state-of-the-art techniques in a standard dataset.

The paper is organized as follows: Section 2 describes our
approach in detail, including the spatio-temporal interest point
detector, the matching process, and link analysis techniques.
In Section 3, we show the performance of our approach on a
standard dataset and finally, Section 4 concludes our paper.

II. LINK-ANALYSIS FOR SPATIO-TEMPORAL FEATURES

In this section, we break down our approach into its major
components and give a detailed introduction to them. In detail,
we will discuss the types of features we used, the use of shape
context features, PageRank, structure similarity computation,
and spectral clustering.

A. Extraction of Spatio-Temporal Features

The first step of our action classification approach is to
extract spatio-temporal interest points from the input video
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Fig. 1. Sample sequences with detected interest points for the KTH dataset.
From (a) to (d), the activities are boxing, handclapping, hand-waving and
jogging.

sequences. The two most recent spatio-temporal descriptors
are proposed by Laptev and Lindeberg [16] and Dollar et al.
[17] respectively.

We use the interest point detector proposed by Dollar et al.
[17] in order to get denser spatio-temporal visual words. For
a video sequence with pixel values I(x, y, t), separable linear
filters are applied to the video in order to obtain the response
function as follows:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (1)

where ∗ indicates the convolution, g(x, y, σ) is the 2D
Gaussian smoothing kernel applied only along the spatial
dimensions (x, y), and hev and hod are a quadrature pair of
1D Gabor filters applied temporally, which are defined as

hev(t; τ, f) = cos(2πft)e−t
2/τ2

(2)

hod(t; τ, f) = sin(2πft)e−t
2/τ2

. (3)

The two parameters σ and f correspond to the spatial and
temporal scales of the detector respectively. The frequency
of the harmonic functions is given by f. In all cases we use
f = 4/τ , as in [5].

Any region with spatially distinguishing characteristics un-
dergoing a complex, non-translational motion induces a strong
response [17]. At these interest points, we extract spatio-
temporal volumes (cuboids). Later we calculate the brightness
gradients within these volumes and concatenate them to form
a feature vector. PCA is then used to reduce the dimensions
of these feature vectors. Figure 1 shows the extracted interest
points on a few sequences from the KTH dataset [18]. Consid-
ering Figure 1(c) as an example, we can see that the interest
points occur at places around the arms, where the periodic
motion induces strong responses.

B. Matching Spatial-Temporal Words and Building VSN

Suppose we have a set I of video sequences, each with
ma, a ∈ I , spatio-temporal features, and the total num-
ber of features in all sequences is M . We apply a graph
matching algorithm on each pair of sequences a, b ∈ I in
order to determine feature level similarities. For computational
efficiency reasons, we use the Hungarian method [19], a
linear assignment matching approach, to match the extracted
features. We also incorporated a shape context descriptor [20]
to implicitly model the spatial arrangement of features.

Based on the pairwise matching results, and similarly to
Kim et al. [12], we build a VSN G = (V,E,W ) where each
node ai ∈ V represents the ith feature in the input video a,
and bj ∈ V represents the jth feature in the input video b.
The weights we ∈ W for each edge e = (ai, bj) ∈ E encode
the similarity score between features ai and bj . The similarity
score between feature vector ai and bj is obtained through the
exponential equation:

W (ai, bj) = exp(−cost(ai, bj)/2σ2) (4)

where cost(ai, bj) is the matching cost between feature ai and
bj . In our experiments we compute the link weights simply
from the difference between the two feature vectors with and
without shape context features. For normalizing the weights
we follow the approach outlined in [12].

The intuition behind the matching algorithm and the VSN
is that the number of links to and from a node reflects the co-
occurrence statistics while each link weight reflects the belief
in that match. This creates a clustering effect. The hope is that
a) features from the same category would tend to interconnect
with each other through strong links, while only weak links
would exist between features from different categories, and
b) features that appear often will have many links. Figure 2
shows the matching results between sequences from same and
different categories respectively. As one can see, sequences
from different classes would incur worse matching while the
matching between sequences from the same category are more
consistent and regular.

1) PageRank: The aim of the next step is to identify the
strongest and most consistent features in each of the videos.
We do this by extracting the sub-graph Ga from our original
VSN that contains the nodes from the video a as well as all
other nodes in the VSN that are connected to the nodes from
a: we set Wij = 0 if i /∈ a and j /∈ a. Then, we apply
pagerank [11] to the sub-graph Ga. The intuition behind the
application of pagerank is that the nodes that are referenced
(linked) often by important nodes are considered important as
well. After pagerank, the features with high ranking values are
those highly relevant and most consistent in the video a.

In short, the pagerank algorithm generates a pagerank vector
P by solving the equation:

P = (1− α)(W +D)P + αu (5)

where W is the weight matrix of Ga, α is a weighting
constant set to 0.1 as in [12], u is the transport vector
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Fig. 2. The matching result between two sequences from (a) the same
category and (b) different categories. Solid lines indicate matching pairs with
low costs while dotted lines indicate costly matching pairs.

representing the initial prior of P (set to a uniform distribution
here) and D = udT , where d is the r-dimensional indicator
vector identifying the nodes with zero outdegree and r is the
dimension of the transport vector. The final ranking value of
each node represents its relative importance in the VSN.

The process is illustrated in Figure 3. Initially, as Figure
3(a) shows, we have a VSN composed of features from
three sequences. We extract the subgraph with respect to
the first sequence, of which the features are represented as
the circular nodes (Figure 3(b)). Then, we apply pagerank
to the subgraph to determine the relative importance of the
features in the subgraph. Figure 3(c) shows the final graph
after pagerank. Larger nodes are those relevant features with
respect to sequence one.

(a) (b) (c)

Fig. 3. The process of pagerank. (a) is the original similarity network we
have. (b) shows the result after the subgraph extraction. Nodes of different
shape represent features from different categories. After pagerank, features
that are important would receive high ranking values, represented as the size
of the nodes in (c). The larger a node is, the higher it ranks.

2) Structure Similarity: After computing pagerank, we
evaluate the structure similarity [13] between two nodes. Here,
we follow the reasoning in [13], [12]: Nodes with a similar
set of links, i.e., nodes that are pointed to by a similar set of
nodes and which are pointing to a similar set of nodes will
most likely belong to the same category. We follow Brondel et
al. [13] to compute the structure similarities Z(ai, bj) between
the visual word ai in sequence a and bj in sequence b.

3) Spectral Clustering: By fusing the result of pagerank
and structure similarity, we can obtain the similarity score
between sequence a and sequence b by

S(a, b) =
∑
bj∈Xb

Pa(bj) +
∑

ai∈Xa,bj∈Xb

Pa(ai)Z(ai, bj) (6)

With the affinity matrix S at hand, we apply spectral
clustering [21] on the k-nearest neighbor graph to uncover
the underlying activities.

III. EXPERIMENTS

A. KTH Dataset

In this section, we apply our algorithm to a standard dataset
and show that it performs well compared to the state-of-the-art
approaches.

The KTH dataset [18] is by far the largest standard activity
dataset, which consists of six categories of activities including
”boxing”, ”hand clapping”, ”hand waving”, ”walking”, ”jog-
ging” and ”running” performed by twenty-five actors in four
different scenarios resulting in a total of 600 sequences. We
test our algorithm using the same parameters as in [5]. The
feature detector parameters are set to σ = 2 and τ = 2.5.
Each spatio-temporal patch is represented by the concatenated
vector of its 3D gradients and then further reduced to 100
dimensions using PCA. We then apply our approach to cluster
the video sequences. The confusion matrix for the KTH dataset
is shown in table I. Note that we lump ”jogging” and ”running”
into one category, as we did not incorporate features such
as speed to distinguish these two activities. Our approach
achieves 91.3% accuracy and performs well compared to
the that of state-of-art approaches (e.g. Niebles et al. [5]
also recently reported 91.3% considering running and jogging
lumped together). The most confusing activities are ”boxing”
and ”hand clapping”, both involving similar hand actions.

TABLE I
CONFUSION MATRIX FOR THE KTH DATASET. THE AVERAGE

PERFORMANCE IS 91.3%. ”BOX”, ”HC”, ”HW”, ”J/R”, ”WALK”
REPRESENT BOXING, HANDCLAPPING, HANDWAVING, JOGGING/RUNNING,
AND WALKING RESPECTIVELY. FOR EXAMPLE, ROW ONE MEANS OUT OF

ALL THE BOXING SEQUENCES, 84% ARE CLASSIFIED CORRECTLY AND
16% ARE CLASSIFIED AS HANDCLAPPING.

Category box hc hw jc wa
box 0.84 0.16 0 0 0
hc 0.04 0.93 0.03 0 0
hw 0 0.06 0.94 0 0
jc 0 0 0 0.94 0.06
wa 0 0.07 0 0.04 0.9

B. Skating Dataset

As a second experiment, we apply our approach to a real
world skating dataset reported in [22]. We extract 24 video
sequences from the dataset and apply the same process to
uncover three activities: stand-spin, sit-spin, and camel-spin.
The detector parameters are set to σ = 2 and τ = 1.2 when
extracting the spatio-temporal interest points, which are then
described by the corresponding PCA- reduced 3D gradients.

Figure 4(a) shows a frame for a sequence from the skating
dataset with detected interest points. Since the sequences are



shot with cluttered backgrounds and irregular camera motions,
lots of irrelevant interest points are detected in the background.
However, after space-time link analysis is applied, most of
them are removed and not considered when classifying the
sequences (Figure 4(b)). The average performance is 83.4%,
which is better than 80.3% using the state of the art approach
[5].

(a) (b)

Fig. 4. (a) Detected (noisy) interest points. (b) Highly ranked interest points
after PageRank.

C. Real World Surveillance Video

As a third experiment, we apply our approach to a real
world surveillance system deployed in large retail stores to
detect fraud scannings at the counters by differentiating three
activities: pickup, scan, and drop. Figure 5 shows sample
frames for these activities, with the detected interest points.
We are able to achieve an 81.5% average accuracy.

(a) (b) (c)

Fig. 5. Sample frames for three activities at the counter. Detected interest
points are show in rectangles. (a), (b), (c) represents pickup, scan, and drop,
respectively.

IV. CONCLUSION

In this paper, we proposed a link-analysis based approach to
unsupervised activity recognition. Different from previous ap-
proaches based on the bag of words models, the link-analysis
approach takes into account the spatio-temporal relationship
between visual words in the matching process. We see this as
the major reason for the good performance of our approach.

Furthermore, we have tested the link-analysis on two
datasets and a real world surveillance application, where
our approach demonstrated its ability to deal with subtle
movements, cluttered, and moving cameras. Future work will
be to deal with multiple moving individuals/objects in the
video data and more extensive evaluations. We would also
like to evaluate the performance of our approach using better
matching algorithm.
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