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Abstract--We address the problem of accurate and efficient 

alignment of 3D point clouds captured by an RGB-D 

(Kinect-style) camera from different viewpoints. Our 

approach introduces a new cost function for the iterative 

closest point (ICP) algorithm that balances the significance of 

structural and photometric features with dynamically 

adjusted weights to improve the error minimization process. 

We also enhance the algorithm with a novel outlier rejection 

method, which relies on adaptive thresholding at each ICP 

iteration, using both the structural information of the object 

and the spatial distances of sparse SIFT feature pairs. The 

effectiveness of our proposed approach is demonstrated in 

challenging scenarios, involving objects lacking structural 

features, and significant camera view and lighting changes. 

We obtained superior registration accuracy than existing 

related methods while requiring low computational 

processing. 

I. INTRODUCTION 

3D object modeling is an active research topic, and has 
many practical applications such as animation, human 
computer interaction, virtual reality, and object 
manipulation by industrial robots [1, 2, 4]. With the birth of 
RGB-D cameras (such as Kinect), synchronized RGB and 
depth images can be captured at the same time, making 3D 
modeling of an object more robust and accessible.  

In a typical 3D modeling process using an RGB-D 
camera, first, the 3D partial point clouds of the object from 
different views are pairwise registered through a coarse 
registration algorithm such as RANSAC (Random Sample 
Consensus) [5, 9], and then this initial registration is further 
refined by an iterative fine registration algorithm such as 
ICP (Iterative Closest Point) [6, 7]. After the fine 
registration, the 3D point cloud model can be transformed 
to other 3D representations for different applications.  

The ICP convergence is sensitive to outliers. To 
improve the performance of ICP, many variants of ICP 
have been proposed [3, 11]. The variants cover the selection, 
matching, weighting, outlier rejection of the 3D points, and 
the minimization of the error metric. However, in some 
cases such as an object lacking salient structural features or 
under significant camera view and lighting changes, even if 
an almost perfect initial alignment is achieved, these ICP 
variants may actually converge to an incorrect alignment 
result since only the 3D structural information is used. 
Several color based ICP algorithms [12, 13] have been 
proposed to alleviate this issue, showing that adding the 
color information decreases the registration error when 
objects lack structural features. However, directly using 
color is not reliable since the color may not be the same for 
the same point in different views due to lighting, shadow, 
or reflection. In [14], SIFT descriptors have been 
incorporated into the ICP iteration process for improving 
registration. However, in this work the algorithm operates 

solely on sparse SIFT feature points, which is a very small 
subset of the point clouds in the 3D case. The performance 
of the algorithm is limited since the structural information 
from the 3D point clouds is not fully used. The algorithm 
could be extended to run on all the 3D points in the point 
clouds. However, it would require to compute the 
128-dimensional SIFT descriptor for every point in the 
object in the search for the closest distance, which is very 
computationally inefficient. Also, it will have problems if 
the object lacks salient texture features. Furthermore, a 
fixed coefficient for weighting the closest distance and 
SIFT matching distance is utilized in this work, which may 
not provide the best performance. 

In this paper, we propose a more robust and efficient 
point cloud registration approach by enhancing ICP with a 
new cost function that balances the significance of 
structural and photometric features with dynamically 
adjusted weights to improve the error minimization process. 
In addition, we introduce a novel outlier rejection method, 
which adaptively sets the outlier distance threshold at each 
ICP iteration by taking into account both 3D structure of 
the object and the spatial distances of sparse SIFT feature 
pairs. We show that our contributions enable ICP to achieve 
superior results than other related methods, in terms of both 
registration accuracy and efficiency. In particular, we 
demonstrate our approach in several challenging scenarios, 
involving symmetrical objects and alignment with large 
camera view and lighting changes.  

The organization of the rest of the paper is as follows. In 
Section 2, we present our proposed approach. In Section 3, 
we discuss our setup to demonstrate the performance of our 
proposed algorithm. In Section 4, we perform simulations 
to show the effectiveness of the proposed techniques. In 
Section 5, we conclude the paper. 

II. TECHNICAL APPROACH 

The standard ICP algorithm aligns two point clouds by 
iteratively associating points through nearest-neighbor 
search and estimating the transformation using a mean 
square cost function. In our approach, to overcome the 
problem associated with the case of objects lacking 
structural features, we add a SIFT-based term into the cost 
function for error minimization. To utilize the structural 
information of the 3D points without intensive computation 
of the SIFT descriptor for every 3D point, we propose to 
add a constraint involving the spatial distances of the SIFT 
feature corresponding pairs which are readily available in 
the iterations. This added term effectively constrains the 
convergence to the correct direction which minimizes the 
spatial distances of points with structural features and 
texture features. In addition to this constraint, we use a new 
dynamic weight to properly balance the significance of 
structural and photometric terms. Moreover, since the initial 
alignment using SIFT matching and RANSAC is not 
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perfect, some of the SIFT points may not be exactly paired. 
Thus, some of the correspondence pairs with large distances 
should be rejected. Therefore, we propose a new outlier 
rejection method which adaptively utilizes both the 
statistics of structural characteristics and the spatial 
distances of SIFT correspondence pairs. Our proposed 
approach is also effective to improve the performance of 
ICP under the situation of significant camera view changes. 
In this situation, the overlapping region is relatively small. 
If the threshold of the outlier rejection only depends on the 
statistics of the closest distances, the threshold will be 
relatively large due to the large number of outliers, meaning 
fewer outliers will be rejected. This may cause inaccurate 
registration results. Our outlier rejection method makes the 
threshold tighter under this situation which improves the 
performance of the registration. 

The procedure of the proposed 3D registration approach 
is described below, followed by a detailed discussion and 
explanation of the equations in our formulation. 

Initial Registration: 
Given the RGB and depth images of two views from the 

RGB-D camera, we obtain two 3D point clouds   
{     }       {     } , where N and M are the 
numbers of points in p and q. The SIFT feature points are 
extracted from the two RGB images. After the initial 
alignment with the RANSAC process, we find the set of 
SIFT feature correspondence 3D points as cf = {(pf1, qf1)… 
(pfL, qfL)} where pfi and qfi are the corresponding SIFT 
feature 3D points in p and q, and L is the number of 
matched SIFT feature pairs. Define T

(k)
 as the transform 

matrix after the kth iteration. T
(0) 

is the transform after 
RANSAC and before the ICP iteration.  

Fine Registration: 
For the kth iteration (k=1, 2, …) in the process:  

(i) For each point    in the point cloud p, find its 
corresponding point qi

*(k)
 in q with the closest distance:  

*( ) ( 1)

{ }[ ( )],
j j

k k

i q q q i jq arg min p T q

              (1) 

The associated closest Euclidean distance with pi is 

   
   

 ‖    
        

    
‖. 

(ii)  Compute the mean and standard deviation of all the 
closest distances. Define the statistic inlier s

(k) 
as a subset of 

p satisfying:
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(iii) Calculate the adaptive threshold for outlier rejection: 

       ( ) ( ) ( ) ,k k kt c er df              (3) 

where c is a constant (we set c = 30 in all simulations).  
df 

(k)
 is the average spatial distance of m% SIFT feature 

correspondence pairs with shorter closest distances (we set 
m = 30 in all simulations).  
er

(k)
 is the root mean square of the closest distances for s

(k)
 

defined in (2): 
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(iv) Define a new objective function f(T) as 
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where we use    to reject the outliers: 

( ) ( )

*( )

0.01
         

( ) ( )

       0                      .

k k

ik

i ii

if cd t
p q

otherwise

 




 



      (5) 

Here      denotes the surface variation defined in [8]: 
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         are the closest r points around    and   ̅ is the 
centroid of these local neighbors. 
The dynamically adjusted weight    is:         
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where c' is a constant which we empirically set to 60, and 
matching_dist(pfi,qfi) is the 2D SIFT matching distance 
between (pfi, qfi) which is available from the SIFT feature 
matching in the RANSAC initial registration stage.                                                                                                          

(v) Find the transformation T
(k)

 by minimizing the objective 

function f(T):                . Also, we delete points 
pi from p with cdi

(k)
>10*t

(k)
 so that in next iteration, we just 

need to search for the closest distance for those remaining 
points. Thus, it can reduce much computation time.  

(vi) The iteration terminates after the root mean square 
(RMS) of the closest distances of the inliers is smaller than 
a set threshold, or until a fixed number of iterations is 
reached (here we set the iteration number to 18 in our 
experiments).  

In (3), we make the adaptive threshold t
(k)

 for outlier 
rejection based on the average spatial distance of  30% 
SIFT feature correspondence pairs with shorter spatial 
distances instead of all the feature pairs because even after 
the initial RANSAC based alignment, some of the feature 
points may not be exactly paired due to the resolution 
limitation or inaccurate matching. Using only a subset of 
feature correspondence pairs with shorter distances, we can 
ensure the accuracy of the chosen feature correspondences.  

The first term in the objective function of (4) is the 
weighted mean square of the closest distances of the inliers. 
In (4) we show the Point-to-Point distance as the error 
metric. In the simulations, we also tried the Point-to-Plane 
distance [6] as the error metric, and the results are similar. 
The second regularization term is the weighted mean square 
of 3D spatial distances of the feature correspondence pairs. 
In addition to outlier rejection, we also use the local surface 
variation to control the weight    (5). As mentioned in [8], 
the surface variation is closely related to the curvature but 
needs much less computation than the curvature calculation. 
Here, we introduce the 3D local surface variation features 
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because the local features can have a better representation 
of the surface structure. If two points with the closest 
distance have similar surface variations, the weight is 
adjusted with more confidence and vice versa.  

Also in (4),     is a dynamic weight for the feature 
correspondence pair (pfi, qfi). If the weight is set too large, 
the transformation mainly depends on the relatively small 
number of feature correspondences. This could cause 
problems when the feature correspondences are not 
completely reliable. On the other hand, if the weight is set 
too small, since the number of feature point pairs is much 
smaller compared to the number of the 3D point inliers in 
the first part of (4), the feature based regularization term 
becomes less significant. To resolve the above problems, 
we adaptively set    according to the SIFT matching 
distance as well as the ratio between the spatial distances of 
SIFT feature pairs and the closest distances of s

(k)
. In (6), if 

the 2D SIFT feature matching distance is large, meaning the 
matching is less accurate, we assign less weights to the 
feature based regularization term. Also, we calculate the 
ratio between the RMS of the spatial distances of the SIFT 
feature pairs and the closest distances for s

(k)
 in each 

iteration. If the RMS distance of the SIFT feature 
correspondences is relatively large compared to the RMS 
distance of s

(k)
, we assign more weights to the feature based 

regularization term to have a more balanced minimization.  

In the algorithm described above, the adaptive threshold 
t utilizes both the structural information and the SIFT 
features of the point clouds. Moreover, we introduce the 
SIFT feature matching constraint into the objective function 
with a dynamic weighting scheme. As a result, ICP will 
converge properly. Unlike the outlier rejection method 
described in [11], our proposed algorithm utilizes the 
texture feature information in the outlier rejections. 
Moreover, unlike the color based ICP algorithm in [12, 13], 
our method is more robust to lighting changes.  

III. EXPERIMENTAL SETUP 

In this section, we show the setup we used to 
demonstrate the performance and illustrate the challenging 
scenarios of symmetrical objects where ICP produces 
inaccurate results.  

The RGB-D images we used are from the RGB-D 
Object Dataset [10] from the Robotics and State Estimation 
Lab of University of Washington with an object placed on a 
turntable. We use only the SIFT features extracted from the 
object in the RGB images to perform RANSAC for the 
initial alignment. After the initial registration, we perform 
ICP on the food-can for the fine alignment to obtain the 
final transformation. Fig. 1 shows the partial 3D point 
clouds of a food-can registered from the two views after the 
initial RANSAC alignment and after ICP. It should be 
noted that most of the black area around the turntable 
belongs to the background. Since the food-can and the 
turntable are rigid and are fixed together, ideally, the 
transform should also be the same for the turntable. We use 
the red rectangle markers on the turntable as shown in the 
figure to demonstrate the problem. Since the markers are 
sharply defined and have a very distinct color from the 
turntable, it is easy to precisely extract the corners of the 
markers. These corner points serve as the ground truth 
points in our simulations for comparison. With the 
coordinates of the six ground truth points (corners), we can 
compute the distance of the ground truth points from two 

views after the fine registration. Since the markers are at a 
distance from the food-can, and ICP is performed only 
based on the 3D points of the food-can, the markers also 
serve the purpose of making the errors more visible.  

  
Fig. 1.  3D point clouds registered from two views. (left) Initial 

registration result. (right) Fine registration result after ICP. 

From Fig. 1, we can see that after the coarse initial 
alignment, the red markers are well aligned (left). However, 
after ICP is performed for the fine registration (right), the 
markers are no longer aligned (mixed with red and white 
colors). This is because the food-can lacks salient structural 
features and ICP in this case will be converged to a wrong 
direction even with a good initial alignment. In Fig. 2, we 
plot the RMS of the closest distances of the 3D points and 
the RMS error of the distances of the ground truth points in 
each iteration. From the figure, we can see that although the 
RMS value of the closest distances of the 3D points is 
decreasing, the RMS error of the ground truth points is 
increasing, indicating that ICP is actually converging to a 
wrong position due to the lack of structural features. 
Moreover, in the scenario where the overlap region from 
two views is relatively small, we also find that ICP will 
encounter similar problems. 

 
Fig. 2.  Fine-registration error curve for a symmetrical object with ICP. 

IV. EXPERIMENTAL RESULTS OF PROPOSED ALGORITHM  

In this section, we demonstrate the improved accuracy 
and efficiency for the challenging scenarios described in the 
previous section with objects lacking salient structural 
features.  

 
  (a)                         (b) 

Fig. 3. Fine-registration errors for the symmetric object by our proposed 

method (a) error curves, (b) the associated visual result of registering the 
two point clouds from Fig. 1 (compare to Fig. 2(b)). 

In Fig. 3, we show the alignment result for the case of 
an object with a symmetrical structure (the food-can case in 
Fig. 1) using our proposed algorithm. In this case, the 
convergence towards the ground truth points does not have 
any problem and the error continues decreasing to a much 
smaller value. Also compared to the original ICP visual 
result in Fig. 1(b), with our proposed approach in Fig. 3(b), 
the markers are aligned very well, which shows the 
effectiveness of our approach. 
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   (a) 

 
   (b) 

Fig. 4.  Comparison of the RMS of distances between the ground truth 
points for the symmetric food-can case with (a) different methods. (b) with 

different lighting. 

 
Fig. 5.  Comparison of the RMS of distances between the ground truth 

points for the case of two views with small overlaps. 

  We compared our method with other previously 
mentioned methods in the above figures. In the food-can 
case, the approximate percentage of overlaps is about 60%, 
so we also draw the curves with a fixed 40% outlier 
rejection method (which gives better performance 
compared to other fixed percentages), the outlier rejection 
method in [11] and the SIFT based registration approach in 
[14] for comparison in Fig. 4(a). As can be seen from the 
figure, for all the previously mentioned approaches, the ICP 
registration results have larger mean square errors than ours. 
We also draw the curves of results from the color based ICP 
approach in [12] with different shading condition in Fig. 
4(b). In the color based ICP results, the errors are much 
larger compared to the result of our approach and its 
accuracy varies significantly in different shading conditions. 
In our approach, since the SIFT descriptor is more robust to 
illumination changes, the inlier SIFT features do not change 
in this case so the varied shading does not affect the fine 
registration result. We also performed simulations for other 
cases such as when two views have small overlaps due to 
abrupt camera view changes as shown in Fig. 5. From it, we 
can see that our approach also performs better than other 
algorithms.  

Besides, we also conduct experiments on the 
computation comparison. We assume that the initial 
alignment (including SIFT matching, RANSAC etc.) is 
performed before ICP in all cases so we can just compare 
the computation in the fine registration stage. From the 
experimental results, the time to calculate the surface 
variation and the outlier rejection threshold in our method is 
not significant and the speed of our algorithm does not 
differ much from the original ICP. In the small overlap 
cases, the speed is even faster than any of the above 
methods, which demonstrates the efficiency of our 
algorithm.  

V. CONCLUSION 

In this paper, to improve the accuracy and robustness of 
the ICP algorithm, we introduced a regularization term 
incorporating the spatial distances of the SIFT feature pairs 
with dynamically adjusted weights to balance the errors in 
the error minimization process. We also proposed a new 
outlier rejection method which is based on adaptive 
thresholding and leverages the structure and sparse feature 
pairs from the texture of the RGB images as a constraint to 
keep the ICP iterations in a right convergent track. 
Simulation results demonstrate the effectiveness of the 
proposed approach compared to previous methods. 
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