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Abstract 
 

We propose a novel approach for modeling, 
tracking and recognizing facial expressions. Our 
method works on a low dimensional expression 
manifold, which is obtained by Isomap embedding. In 
this space, facial contour features are first clustered, 
using a mixture model. Then, expression dynamics are 
learned for tracking and classification. We use 
ICondensation to track facial features in the embedded 
space, while recognizing facial expressions in a 
cooperative manner, within a common probabilistic 
framework. The image observation likelihood is 
derived from a variation of the Active Shape Model 
(ASM) algorithm. For each cluster in the low-
dimensional space, a specific ASM model is learned, 
thus avoiding incorrect matching due to non-linear 
image variations. Preliminary experimental results 
show that our probabilistic facial expression model on 
manifold significantly improves facial deformation 
tracking and expression recognition.  
 
1. Introduction 
Computational facial expression analysis is an active 
and challenging research topic in computer vision, 
impacting important applications such as in human-
computer interaction and data-driven animation. 
Approaches for automatic modeling and recognition of 
facial expressions are generally classified as static 
(processing still images) and dynamic (tracking and 
analyzing facial deformations in video sequences). 

In the past decade, many techniques have been 
proposed to automatically classify expressions in still 
images, using methods based on Neural Networks 
[1,16], Gabor wavelets [2] and rule-based methods [3], 
to mention just a few. However, in recent years, more 
attention has been given to modeling facial 
deformation in dynamic scenarios [4,5,18], which 
allows the integration of information temporally across 
the video sequence, potentially increasing recognition 
rates over single-image approaches. For such dynamic 
scenarios, current methods work in two separate 
stages: tracking and recognition. The tracking module 
extracts features over time, while the recognition 

module processes this information for expression 
classification.  

Many systems obtain facial motion information by 
computing dense flow between successive image 
frames. But flow estimates are easily disturbed by the 
variation of lighting and non-rigid motion, and they are 
also sensitive to the inaccuracy of image registration 
and motion discontinuities [5]. 

Model-based approaches, such as Active Shape 
Models (ASM) [6] and Active Appearance Models 
(AAM) [7] have been successfully used for tracking 
facial deformation. The ASM method detects facial 
landmarks through a local-based search constrained by 
a global shape model, statistically learned from 
training data. The AAM algorithm elegantly combines 
shape and texture models, assuming a linear 
relationship between appearance and parameter 
variation. Both methods, however, tend to fail in the 
presence of non-linear image variations such as those 
caused by large facial expression changes.  

Nonlinear embedding methods such as ISOMAP 
[8], local linear embedding (LLE) [20], charting a 
manifold [21], and global coordinate of local linear 
models [22] are promising in handling high 
dimensional nonlinear data. Recently, researchers have 
applied manifold methods to face recognition 
[10,19,23] and facial expression representation [15, 
24].  

This paper presents a novel representation for 
dynamic facial expression analysis, as well as a 
probabilistic framework for tracking and recognizing 
facial deformation in a cooperative manner. Our 
assumption is that video sequences of a person 
undergoing different facial expressions define a 
smooth and relatively low dimensional manifold in a 
feature space described by a set of facial landmarks. 

Initially, we use Isomap embedding [8] to project 
our training video data into the low dimensional 
expression manifold. Then, a Gaussian mixture model 
is applied to cluster data in the low dimensional 
expression space. For each cluster, a specific ASM 
model is learned, since tracking by online probabilistic 
model is more robust to non-linear image variations. In 
addition, we learn the dynamics for each cluster in the 
manifold to improve tracking and recognition.  



Based on this representation, a particle filter tracker 
is used to track facial deformation in the embedded 
space, while recognizing facial expressions. Differing 
from traditional methods that consider expression 
tracking and recognition in separate stages, we address 
these tasks in a common probabilistic framework, 
which enables them to be solved in a cooperative 
manner. 

The remainder of this paper is organized as follows: 
in Section 2 we discuss related work. Section 3 covers 
the learning of our proposed representation, while 
Section 4 describes the framework to track and 
recognize facial expressions. Section 5 reports our 
experimental results and Section 6 presents 
conclusions and future work. 

 
2. Related Work 
Recently, Wang et al. [9] demonstrated the importance 
of applying non-linear dimensionality reduction in the 
field of non-rigid object tracking. In fact, representing 
the object state as a globally coordinated low 
dimensional vector improves tracking efficiency and 
reduces local minimum problems in optimization. 
They learn the object’s intrinsic structure in a low 
dimension manifold with density modeled by a mixture 
of factor analyzers. Our work also models the intrinsic 
structure of facial expressions for tracking, but extends 
it to include recognition in a unified probabilistic 
framework. 

We were also inspired by the work of Lee et al. 
[10], who present a method for modeling and 
recognizing human faces in video sequences. They use 
an appearance model composed of pose manifolds and 
a matrix of transition probabilities to connect them. In 
our work, we consider transition probabilities among 
clusters in the embedded space, effectively capturing 
the dynamics of expression changes and exploiting the 
temporal information for recognition. 

Zhou, Krueger and Chellapa [11] proposed a 
generic framework to track and recognize human faces 
simultaneously by adding an identity variable to the 
state vector in the sequential importance sampling 
method. The posterior probability of the identity 
variable is then estimated by marginalization. Their 
work, however, does not consider tracking and 
recognition of facial deformation, the main focus of 
this paper. 

Cootes et al. [6] proposed the Active Shape Model 
algorithm, which detects facial landmarks through a 
local-based search constrained by a global shape 
model, statistically learned from training data. This 
method was extensively used for facial deformation 
tracking, but may fail under large expression 
transitions. In our approach, we use specific ASM 

models for each cluster in the embedded space. On-line 
model selection is done probabilistically in a 
cooperative manner with expression classification, thus 
improving tracking reliability.  

 
3. Learning Dynamic Facial Deformation  
Non-linear dimensionality reduction has attracted 
attention for a long time in computer vision and 
visualization research. Images lie in a very high 
dimensional space, but a class of images generated by 
latent variables lies on a manifold in this space. For 
human face images, the latent variables may be the 
illumination, identity, pose and facial deformations.  In 
this paper, we are interested in embedding the facial 
deformations of a person in a very low dimensional 
space, which reflects the intrinsic structure of facial 
expressions. From training video sequences of 
different people undergoing different expressions, a 
low dimensional manifold is learned, with a 
subsequent probabilistic modeling used for tracking 
and recognition. 
 
3.1. The Training Database 
For preliminary testing, we collected a database of two 
subjects who were asked to perform six basic facial 
expressions multiple times. To reduce the influence of 
illumination variation, we preprocessed the training 
data video sequence by detecting a set of 2D facial 
landmarks in each image, which defines the shape of a 
face in each particular frame. We use the Active Shape 
Model algorithm to accomplish this task. With a good 
manual initialization and separate training models 
prepared specifically for each expression image set, we 
can extract the face shape precisely. Figure 1 shows the 
facial points in our shape model.  

The whole training dataset, comprising different 
video sequences of different people undergoing 
different facial expressions, is then specified by a set 

},...,{ 1 nxxX = , where D
i Rx 2∈ notes a set of 

D  facial points in a particular frame, and n  denotes 
the total number of images in the training data. Unlike 
traditional manifold embedding papers, where data can 
be in any order, our training images are ordered 
according to the video sequences, thus allowing the 
learning of dynamics on the manifold, as we will show 
later. 
 
3.2. Isomap Embedding 
To embed the high dimension data set 

},...,{ 1 nxxX =  with D
i Rx 2∈ to a space with 

low dimension d < 2D, we use the Isomap embedding 
algorithm [8]. Our goal is to find the latent variable 



},...,{ 21 nyyyY = , where d
i Ry ∈ . This latent 

variable encodes the knowledge of the data set and 
controls the data variations. 

In the Isomap algorithm, the local geometry of the 
high dimensional manifold is initially measured 
through the distances between neighboring data points. 
For each pair of non-neighboring data points, Isomap 
finds the shortest path through the data set connecting 
them, subject to the constraint that the path must hop 
from neighbor to neighbor. The length of this path is 
an approximation to the distance between its end 
points, as measured within the underlying manifold. 
Finally, the classical method of multidimensional 
scaling [14] is used to find a set of low dimensional 
points with similar pairwise distances.  

Figure 2 shows the result of projecting our training 
data (set of facial shapes) in a three dimensional space 
using Isomap embedding. 
3.3. Mixture Model on the Embedded Space  
In the lower dimensional embedded space, we describe 
the distribution of the data using a Gaussian Mixture 

Model (GMM). The Expectation-Maximization (EM) 
algorithm is used to estimate the distribution. The 
following equation describes the density model, where 

)( yp is the probability that a point in the low 
dimensional space is generated by the model, k is the 
number of Gaussians, )( ip =ω constitutes the 
mixture coefficients and ),( ii CN µ  describes each 
Gaussian distribution with mean iµ and covariance 
matrix iC : 
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Figure 3 is an example to illustrate this GMM in the 
embedded space. Ellipsoids centers and sizes show the 
mixture centers and the covariance respectively.  
3.4. Cluster-Based Active Shape Models 
If we were to train an Active Shape Model from all the 
images in a data set together, the significant variation 
in the data set would not be modeled well and the 
tracking performance would be poor. Instead, we train 
a set of ASM models for each image cluster; that is, for 
each set of images corresponding to a mixture center 
(with a defined covariance) of the GMM in the 
embedded space.  

 We also propose a method to select and 
probabilistically integrate the ASM models in 
ICondensation framework. We will show in Section 4 
that online model selection allows tracking to be robust 
under large expression variations. 

In ASM, a shape vector S is represented in the 
space spanned by a set of eigenvectors learned from 
the training data. As a result, S may be expressed as: 

     UsSS +=   (3.2) 
where S is the mean shape, U is the matrix consisting 
of eigenvectors and s  constitutes the shape 

Figure 1. The shape model, defined by a set of 
facial landmarks. 

Figure 2: Training data in the embedded space. 
Different colors correspond to different expressions. Figure 3: GMM in the embedded space. Ellipsoids 

centers show the mixture centers; sizes show the 
covariance. 



parameters, which are estimated during ASM search. 
In Section 4, we will describe how tracking is achieved 
using the learned ASM models. 
 
3.5. Learning Dynamics on the Manifold 
Based on the manifold representation, we can learn a 
dynamic model, defined as the transition probability 

)|( 1−tt yyp . Let },...,1{ k∈ω be a discrete random 
variable denoting the cluster center and 
let },...,1{ rnr ∈  be a discrete random variable 

denoting the expression class. For this work, rn  = 6, 
meaning that r can assume six basic expressions. We 
have been using the prototypical universal expressions 
of fear, disgust, happiness, sadness, anger and surprise, 
though the method does not depend on this particular 
grouping. 

The dynamic model can be factorized in the 
following way: 
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This assumes that ωt and yt-1 are conditionally 
independent given ωt-1.  

For each state of 1−tr  (i.e., each expression class), 
the cluster transition dynamics ),|( 11 −− ttt rP ωω  can be 
learned from the training data.  ),|( 1 ttt yyP ω− is the 
dynamic model for a known cluster center. For 
simplification, we assume the dynamics in a fixed 
cluster is the same for each expression.  

Similar to Wang, et al. [9], we also model the 
within cluster transition as a first order Gaussian Auto-
Regressive Process (ARP) by:  

),(),|( 11
T

tttt BBDyANyyp
tt ωωω += −−          (3.4) 

which can be represented in generative form as 

ktt BwDyAy
tt

++= − ωω 1  (3.5) 

where 
t

Aω  and 
t

Dω are the deterministic parameters 

of the process, TBB is the covariance matrix, and kw  
is independent random white noise.  

For AR parameter learning, we use the same 
method as Blake and Isard [12]. Combining equations 
(3.3), (3.4) and (3.5), we get:  
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Wang et al. [9] pointed out that the equations above 
model a Mixture of Gaussian Diffusion (MGD), whose 
mixture term is controlled by the random variable tω . 
In our work, the mixture term is also controlled by the 
expression recognition random variable.  
 
4. Probabilistic Tracking and Recognition 
In the previous section, we showed how to learn a 
facial expression model on the manifold as well as its 
associated dynamics. Now, we show how to use this 
representation to achieve robust online facial 
deformation tracking and recognition. Our probabilistic 
tracking is based on the ICondensation algorithm [13], 
which is described next, followed by expression 
classification. Both tracking and recognition are 
described in the same probabilistic framework, which 
enables them to be carried out in a cooperative manner. 
 
4.1. ICondensation Tracking  
Our object state is composed of rigid and non-rigid 
parts, defined by )...; ,,,( 1 dyyscyxs θ= . The rigid 
part ),,,( scyx θ represents the rigid face motion 
(position, orientation and scale), while the non-rigid 
part ( dyy ...1 ) is the low dimensional representation of 
facial deformation obtained by Isomap embedding, as 
described in Section 3.  

At time t, the conditional object state density is 
represented as a weighted set of samples 

},...1),,{( )()( Nns n
t

n
t =π , where )( n

ts  is a discrete 
sample with associated weight )( n

tπ , where 

1)( =∑
n

n
tπ . Below we illustrate one step of a 

sample’s evolution. 
After this step, the state with largest weight 

describes the tracking output in each frame, consisting 
of face pose ),,,( scyx θ and deformation, which is 
obtained by projecting ( dyy ...1 ) back to the original 
shape space, through a nearest-neighbor scheme. 

 
 
 
 



 
 
Sequential Importance Sampling Iteration: 
 
Main Objective: Generate sample set 

},...1),,{( )()( NnsS n
t

n
tt == π  at time t  from sample 

set },...1),,{( )(
1

)(
11 NnsS n

t
n

tt == −−− π  at time 1−t .  
 
Algorithm: 
For each sample, n = 1 to N : 

1)  Create samples n
ts~  

Choose one of the following sampling methods 
with a fixed probability: 

(1) Generate sample from initialization prior. 
(2) Generate sample from importance re-

sampling, where the importance function is 
the posterior from time t-1;  

2)  Predict n
ts  from n

ts~  
a) If n

ts~ was generated from the prior probability, 
choose n

ts from n
ts~  adding a fixed Gaussian noise. 

b) If n
ts~  was generated from the posterior 

probability, apply the dynamic model for prediction. 
For the rigid state part, we use constant prediction, 
adding a small Gaussian noise. For the non-rigid 
part, we use the MGD noise model, where the 
weight of each component is controlled by the 
cluster center distribution )( tp ω and expression 
classification distribution )( trp .  

3) Update the set of samples. The measurement of the 
sample n

ts is )( n
tπ = *)( i

tλ M( n
ts ), where )( i

tλ is the 
importance sampling correction term. M is the sample 
measurement function, described in the next 
subsection. 

4) After all the samples are generated and measured, 
normalize )( n

tπ  so that 1)( =∑ n
n

tπ  and store the 

sample set as },...1),,{( )()( Nns n
t

n
t =π  

 
 
4.1.1. Sample Measurement  
In order to measure a sample (function M in the 
algorithm above), we proceed in the following way. 
For each mixture center in the embedded space, a 
specific ASM model is selected to measure image 
observation. This measure is given by a residual error 

obtained after applying one step of ASM search (we 
refer to Cootes et al. [6] for details on the search 
process). Face pose initialization is given by the 
sample rigid part ),,,( scyx θ  and shape initialization 
is computed by projecting the non-rigid part ( dyy ...1 ) 
of the sample back to the original shape space (using a 
nearest-neighbor scheme).  

Once we have a residual error for each one of the 
mixture centers, the desired sample measurement is 
obtained by a weighted sum of these residuals, where 
the weights corresponds to the likelihood of the sample 
non-rigid part ( dyy ...1 ) in each Gaussian model. 

This scheme allows tracking to be robust under 
large facial expression changes, as we will show in 
Section 5. Next we describe how to update expression 
classification in each frame, using a common 
probabilistic framework. 
 
4.2. Expression Recognition Updating  
We have already showed that the distribution of the 
discrete random variable r (the expression recognition 
variable) directly affects tracking (see sample 
prediction and dynamic model learning). Now we 
show how to update the posterior probability 

)|( :0 tt yrp  in every frame to identify facial 
deformation. 

In the ICondensation tracking, by assuming 
statistical independence between all noise variables, 
Markov property and priors of the 
distributions )|( 00 rp ω , )|( 00 yrp , )|( 1−tt yyp  on 
embedded space, our goal is to compute the 
posterior )|( :0 tt yrp . It is in fact a probability mass 
function (PMF) as well as a marginal probability of 

)|,( :0 ttt yrp ω . Therefore, the problem is reduced to 
computing the posterior probability )|,( :0:0:0 ttt yrp ω . 
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By marginalizing over t:0ω and 1:0 −tr , we obtain: 
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distributions and the product of the likelihood 
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5. Experiments 

In this section, we present our preliminary 
experimental results on facial deformation tracking and 
recognition.  

To learn the structure of the expression manifold, 
we need O(103) images to cover basic expressions for 
each subject and to enable stable geodesic distance 
computation. Since there is no database with a 
sufficiently large amount of subject data available, we 
built our own small data set for the experiments.  In 
our experiments, subjects were instructed to perform a 
series of six kinds of prototypical facial expressions, 
representing happiness, sadness, anger, surprise, fear, 
and disgust. The subjects repeated the series seven 
times for the gallery set. The probe set includes a long 
sequence (more than 104 frames) where the subject can 
change his/her expression randomly. To simplify the 
problem, we assume constant illumination and near 
frontal view pose. 

To generate the shape sequence from the training 
data set, we trained ten ASM models for different 
kinds of deformations. We manually select the model 
in this offline stage to robustly track facial deformation 
along the video sequences. The shape space dimension 
is 90. We used the Isomap algorithm to obtain a space 
with dimensionality d=3.  

We verified that our probabilistic method is able to 
track and recognize long sequences of subjects 
performing subtle and large expression changes. Figure 
4 shows two frames from a tracking and recognition 
test using a video sequence of more than 104 frames. 
The bars for each expression label in the figure indicate 
their respective recognition probabilities. A complete 
output video sequence is available at  
http://ilab.cs.ucsb.edu/demos/. 

We also quantitatively analyze the performance of 
our tracker with a standard ASM tracker. Figure 5 
shows a precision comparison, considering as ground 
truth a manual labeling of eye corners and lip corners. 
The same images were used to train both trackers. The 
difference is that our method automatically splits this 
data to train a set of models, which are probabilistically 
selected during tracking. This allows more robust 
performance under large facial expression changes. 
 
6. Conclusions 
We proposed a novel framework for dynamic facial 
expression analysis. We now summarize our main 
contributions: 

(1) A new representation for tracking and 
recognition of facial expressions, based on manifold 
embedding and probabilistic modeling in the 
embedded space. 

(2) A robust method for facial deformation tracking 
based on a set of ASM models, which are 
probabilistically selected during tracking, improving 
reliability under large expression changes. 

(3) A probabilistic expression classification 
method, which integrates information temporally 
across the video sequence. In contrast with traditional 

Figure 5: Comparison of tracking precision between 
an ASM tracker and our method. We have obtained 
considerably improvement, mainly under the 
presence of images with large expression changes. 

Figure 4: Sample frames of our output tracking and 
recognition result in a video sequence with more 
than 104 frames. 



methods that consider expression tracking and 
recognition in separate stages, we address these tasks 
in a common probabilistic framework, which enables 
them to be solved in a cooperative manner. 

Our results are preliminary, as our data set is quite 
small. We plan to perform much more extensive 
experimentation and provide more substantial 
quantitative results. For future work we will attempt to 
extend our framework to include pose and illumination 
variations. 
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