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Abstract

We present a novel method for automated segmentation
of axons in extremely noisy videos obtained via two-photon
microscopy in awake mice. We formulate segmentation as
a pixel-wise classification problem in which a pixel is clas-
sified into “axon” or “non-axon” based on its feature vec-
tor. In order to deal with high levels of noise, the features of
our classifier are derived from spatio-temporal Independent
Component Analysis (stICA) which effectively isolates noise
from signal components while leveraging temporal coher-
ence from the video. We fit parametric models to represent
the distribution of the extracted features and apply a prob-
abilistic classifier over stICA components to determine the
label of each pixel. Finally, we show compelling qualitative
and quantitative results from very challenging two-photon
microscopic, demonstrating the usefulness of our approach.
An example time-series of two-photon images with our au-
tomated ROI extraction overlayed is available with the sup-
plemental materials.

1. Introduction
Two-photon microscopy has emerged as an important

tool for in vivo measuring the activity of large populations

of neurons and sub-cellular neuronal compartments, such

as axons and dendrites. By imaging genetically encoded

calcium indicators [18] expressed in neurons of awake be-

having animals, neuroscienctists are able to relate the activ-

itiy of neuronal populations – reflected by changes in flu-

orescence intensity – to behavior and learning [7]. De-

tecting and segmenting these neuronal structures to identify

regions-of-interest (ROI) for subsequent analysis is a fun-

damental task in this process, which is especially challeng-

ing in the case of small and irregularly shaped sub-cellular

compartments such as axons and dendrites. Accurate au-

tomated solutions to the problem are necessary, as man-

ual approaches are inefficient and inconsistent from one re-

searcher to the next.

In this paper we address the problem of automating the

segmentation of axons in two-photon calcium imaging data.

A unique challenge to accomplish this goal dealing with ex-

tremely noisy data inherent in the two-photon imaging pro-

cess, as shown in Figure 1. In fact, off-the-shelf segmenta-

tion algorithms proposed in the computer vision community

[15, 12, 5] are clearly not suitable to process this kind of im-

ages. Also, standard image denoising techniques [13, 1] are

generally designed to handle limited noise levels instead of

extremely noisy frames as in our application.

As a novel contribution, we propose a supervised clas-

sification method for automated axon segmentation with

well-crafted features suited to handle highly noisy two-

photon microscopy. For features, we consider intensity and

gradient measurements from component images obtained

by applying dimensionality reduction followed by spatio-

temporal independent component analysis (stICA) to the in-

put video, which helps isolating noise from neuronal activ-

ity signals by separating areas of the images whose func-

tion is correlated in both space and time [17, 11]. Then, we

model the distribution of features and design a probabilistic

classifier to determine “axon” and “non-axon” pixels from

stICA components. Finally, we apply connected component

analysis and use a contour tracing algorithm to determine

axon boundaries.

The rest of the paper is organized as follows. Section

2 provides an overview of related work. In Section 3 we

describe the details of our proposed approach for segmenta-

tion of axons in two-photon microscopy videos. Section 4

covers our experimental analysis, including qualitative and

quantitative results, as well as comparison with other meth-

ods. Finally, Section 5 concludes the paper.

2. Literature Review
The recent advances in high-resolution and rapid mi-

croscopy techniques provide scientists the cell-level vi-

sual perception to understand the underlying mechanism

of complex biological systems. Due to the high-volume

of the generated data, manual annotation and processing
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is infeasible for large scale morphological analysis of ax-

ons needed in real applications. Hence, interests in au-

tomatic segmentation techniques for microscopy images

have been rapidly expanding since the segmentation results

can be used further for various quantitative analysis in-

cluding tracking cellular dynamics [16], identifying cellular

types [20, 22, 19] and extracting axon morphology [8, 14].

As surveyed in [10], many techniques have been developed

for segmenting various types of cell images in the past few

decades. Most of the existing approaches rely heavily on

several heuristic segmentation strategies, including inten-

sity thresholding, morphological filtering and region accu-

mulation. In addition, previous studies focus on segmenting

cells from static microscopy images and tend to be highly

sensitive to image noise. Therefore, these static approaches

have limited capacity to explore the spatio-temporal infor-

mation of dynamic signals from axons, neither can they

handle high levels of imaging noise well.

Furthermore, some new approaches were specifically de-

signed to extract the geometric structures of axons from a

sequence of microscopy images [2, 14, 21]. For instance,

the repulsive force based snake model is used to connect

axonal profiles segmented from each image frame to re-

construct the 3D structure [2]. Additionally, a dynamic lo-

cal tracing approach has been designed to retrieve the 3D

curvilinear structure of axons [21]. However, in order to be

successful for our application the segmentation must suc-

ceed while accounting for both extremely noisy data as well

as the possibility of overlapping segments. Examples of

two-photon microscopy imaging data are show in Figure 1

(a) and the supplemental materials. To address these chal-

lenges, we propose a novel segmentation procedure that ex-

plores stICA and pixel level classification as illustrated in

Figure 1. The stICA technique has been used to process

functional magnetic resonance imaging data [17] and also

to extract cell locations and their dynamics with minimum

supervision from calcium imaging data [11]. Pixel classi-

fication has been used for automated segmetation of ultra-

sound images in [23]. These methods are combined to de-

velop a fully automated axon segmentation approach which

perfroms well and is capable of extracting ROIs even when

presented with highly noisy data.

3. Technical Approach

Our approach focuses on two steps, outlined in Figure 1.

In the first step, stICA is used to identify the components

of the data which statistically have maximal independance

in both space and time. The second step is then to extract

the ROIs from each of the stICA components through the

application of a pixelwise classifier on each of the extracted

components.

3.1. Preprocessing

Raw video files are acquired from awake head-fixed mice

performing tasks on a treadmill while positioned under a

two-photon microscope (see [9] for methods). An example

of the input data is shown in Figure 1 (a). The resulting

images require motion correction both to account for the

motion of the animal on the treadmill as well as the scan-

ning techniques implemented by the microscope. There-

fore, prior to extracting components from the data, the time

series is preprocessed using established techniques to cor-

rect for motion artifacts within and between frames using

an established Hidden Markov Model (HMM) based tech-

nique [4, 9].

3.2. Spatio-Temporal Component Analysis

We are interested in spatio-temporal components which

can be used to help identify axon segments and remove

noise. One method which has been applied to find the com-

ponents is PCA. Prior to conducting PCA, each video is

represented as a matrix M ∈ R
Nx×NT , where Nx is the

number of pixels in each frame and Nt is the number of

frames in the time series. Applying PCA to a video of the

data picks out the dimensions along which the intensity of

the pixels have the maximum variance. By performing PCA

on the time-series and maintaining only the first k principal

components (PCs), dimensions containing low amounts of

information are removed resulting in a significant decrease

in noise. Qualitative results confirm that this method gener-

ates components with less noise in them (see supplemental

Materials). Note that it has been reported that the first few

spatial PCs tended to be dominated by high variance noise

sources [11]. However, in our experiments, we maintained

all of the first PCs because they often contained useful axon

information (see supplemental materials).

Although PCA helps in identifying the image regions

with active axons, single PCs often contain overlapping seg-

ments of distinct axons. To separate the extracted axons,

we consider applying ICA that is developed for separating

linearly mixed signals. ICA finds the components of the

signal which are statistically independent, rather than sim-

ply uncorrelated. Applying ICA to the extracted PCs is a

process that takes into consideration both the spatial and

temporal coefficients and tends to generate sparser compo-

nents than those found through PCA alone. In order to im-

plement the spatial and temporal ICA, the temporal coeffi-

cients from the PCA are concatenated to the spatial ones as

suggested in [11]. Mathematically, we define the follow-

ing spatio-temporal variable yi and the corresponding ICA

components zi:

916



Figure 1. (a) Time sequences of two-photon images of calcium signals from axons of hippocampal neurons in awake mice performing

behavior and learning tasks. (b) Extracted component images reflecting regions of activity which are maximally indepentdant in both space

and time, through the application of the stICA methods. (c) Pixelwise classifiers are trained and distributions for two features are extracted,

describing the stICA pixel intensity and local gradients. (d) Evaluating each pixel and extracting those most likely to be representing

neuronal axons allows boundaries to be defined which separate the different functional units in the time sequence.

yi =

{
μUki i ≤ Nx

(1− μ)Vki Nx < i ≤ (Nx +Nt)
(1)

zki =
∑
j

W
(n)
i,j y

(j),

where k is the number of components used for the analysis,

U corresponds to the spatial PCA component matrix with

dimensions Nx by k PCs and V corresponds to the Nt by

k temporal PCA component matrix. Here μ is a weighting

parameter to balance the tradeoff between the spatial and

temporal information. ICA is performed on yi to extract the

independent components zi. In our experiments, we use the

FastICA algorithm [6] to compute the weighting matrix W,

as well as the independent components zi. Figure 1 (b)

shows examples of components extracted by stICA. Since

stICA components are also temporally independent active

axon segments with overlapping pixels in the average of the

time series appear in separate stICA components if they are

active at different times. This is advantageous since it al-

lows the axons which overlap to be identified in separate

segments. The stICA components result in a much sparser

representation of the axons which simplifies the segmenta-

tion problem.

3.3. Axon Segmentation by Pixelwise Classification

In order to extract the ROIs (axon segments) from the

stICA components, individual pixels from each component

are classified as “axon” or “non-axon”, as to whether they

belong to regions of interest or not. Our classifier operates

at the pixel-level and relies on two descriptive features de-

rived from the stICA component images The first feature is

the relative weighting of the individual pixels in each stICA

components. The second is the sum of the magnitudes of

the gradients in a small area surrounding each pixel.

Prior to extracting this feature vector, we subtract the

mean of every component and normalize the absolute values

to be in the range between 0 and 1. Subtraction and normal-

ization ensure that pixel weights in axon regions are normal-

ized across components and that the relative importance of

each pixel is maintained. This normalization makes it pos-

sible to train likelihood distributions using training datasets

and then run the classifier on any stICA components.

In the training phase, we manually label a set of pos-

itive samples (pixels belonging to ROI/axon regions) and

negative samples (pixels outside ROI/axon regions) from

component images obtained by stICA. We use these train-

ing samples to model the distribution of our features.

Figure 2 (a) and (b) illustrate the binning of our first

descriptive feature (stICA pixel intensity) for ROI pixels,

showing that they fit approximately to a Rayleigh distribu-

tion. The Rayleigh distribution is chosen, as in [23], for

the ROI pixels due to it’s shape and fit to the histograms of

the data. We also show that the non-ROI pixels fit well to a

normal distribution. Similar results are achieved by plotting

these distributions for several of the components.

Our second descriptive feature used to classify pixels is
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Figure 2. (a) and (c) Training axons are selected from stICA com-

ponents, and used to generate distributions which describe the

pixel intensity and the negative sum of local gradients. (b) and

(d) Axon pixels are fit to a Rayleigh distributions while the noisy

background pixels are fit to normal distributions

the evaluation of the patch-gradient for each of the stICA

pixels. In order to get an accurate representation of whether

a pixel is sitting on an area of random intensities, or near an

area of similarly weighted ROI pixels, a sum of gradients

is conducted in a small area around each pixel. For this to

work on a small scale, the image is converted to a binary

array first based on a threshold on the standard deviation

of the pixels in each component. Then the gradients are

summed up around the local neighborhood of each pixel.

Training on ROIs from several stICA components is

taken to ensure the distributions generalize well when ap-

plied to components on which they have not been trained.

Figure 2 (c) and (d) illustrate the extraction of patch-

gradient features. The ROI patch gradients are fit to another

Rayleigh distribution while the non-Axon fits a normal dis-

tribution.

During the testing phase, the following steps are per-

formed to identify axon/ROI pixels. First, the input video

is pre-processed and stICA is conducted as described in the

previous section. Then, for each pixel of each component,

we extract our two-dimensional feature vector (stICA pixel

intensity and patch-gradient) and use the parametric feature

distributions computed at training time to measure the like-

lihood of each pixel to be part of an axon or part of the

background. For every pixel both the “axon” likelihood and

the “non-axon” likelihoods are evaluated. The pixel is as-

signed a category based on which likelihood is higher. An

example of this training step for a single stICA component

is shown in Figure 3. The previously trained distributions

for both “axon” and “non-axon” classes are shown in (a)

and (c) while the weights for each pixel and resulting class

decision are indicated in Figure 3 (b).

Figure 3. Distributions to model the likelihood that an individ-

ual pixel is either an ROI or background noise. (a) For the stICA

intensity feature, a Rayleigh distribution models the ROI pixel in-

tensity and a normal distribution centered near zero models the

background. (c) Similar distributions were found which model the

stICA patch gradient feature. (b) Both features are extracted for

every pixel in a single stICA component and pixels are classified

as to whether they are more likely to reside within an ROI, shown

in green, or more likely to reside in background, shown in red.

3.4. Spatial Segmentation

After the classification step each of the stICA compo-

nents has been translated into a binary mask of pixels la-

beled as belonging to the “axon” class. These masks are

then separated completely along any discontiguous units

into individual ROIs. This can be easily implemented via

connected component analysis, i.e. a recursive search for

adjacent non-zero pixel values. Note that this process is ap-

plied to each stICA component separately, where the axons

are not overlapped. No additional pre-processing based on

morphological operations was required.

ROI masks which contain very few pixels are discarded

at this point as they are not large enough to perform use-

ful analysis and most likely arise from background noise.

We then apply a clockwise traversal of the ROI boundary to

connect edge points with their neighbors in an ROI region.

This optional step smooths the ROI boundary and facilitates

future analysis.

4. Experimental Results
Our classification system was run on datasets of 3500

frames of two-photon data taken from the same mouse

over the course of several trials comprising a single experi-

ment for which a manually extracted ROI overlay was con-

structed. A time-averaged frame was constructed for this

dataset which is shown behind the extracted ROIs in Fig-

ures 1 (d) and 4. Highly active axons show up as brighter

then the surroundings, while dark areas correspond to areas

of little or no activity. As visible in Figure 4, the larger dark
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Figure 4. (a) The results of the proposed method of stICA and pix-

elwise classification. (b) Using only PCA instead of stICA results

in a large amount of misclassification, especially in cases where

there are blood vessels, the large inactive areas. (c) Using stICA,

but not pixel classification finds fewer ROIs, but has a lower rate

of falsely positive pixels.

areas indicate likely locations for blood vessels in which

there is no neuronal activity.

The first experiment conducted was to construct an over-

lay of the ROIs and view it on the motion corrected version

of the input video (see supplemental video). Performing

this qualitative analysis of the video yielded a positive re-

sult as the obvious areas of high activity are identified and

well segmented. Parameters for the minimum ROI size and

μ are set to default values of 50 and 0.01 respectively. These

values are found to perform well on our example 250x215

pixel datasets, but may be fine-tuned to provide a better fit

for individual data.

A quantitative comparison was then performed between

the automatically extracted ROIs and samples of the re-

searcher’s hand-drawn ”ground truth” ROIs. In order to per-

form this comparison, the 30 most significant ROIs from the

hand drawn set, as determined by average activity and size

were lined up with the closest matching of the automatically

generated ROIs. Matching was determined per significant

ROI on a scale from 0 to 1 in accordance with Dice’s coin-

cidence index [3]. The Dice coefficient was then summed

for all 30 pairs of ROIs in order to determine the “matching

score” for each ROI extraction trial:

S =

30∑
j=1

2× |Qj ∩Dj |
|Qj |+ |Dj | (2)

Where Qj represents the pixels in one of the significant

ROIs, while Dj is the corresponding automatically gener-

ated ROI which maximizes this score. A score of 0 indi-

cates that no overlapping automatically generated ROI is

found, while a score of 1 would indicate a perfect match

(see supplemental materials for examples). Summing the

score for all 30 of the significant ROIs gives a score for the

entire trial ranging from 0 to 30. This test was performed

multiple times since the convergence of the FastICA algo-

rithm is dependent on its random initialization. The mean

score observed on the example data across 4 trials was 14.1.

Examples of the extracted ROIs are shown in 4(a) and the

quantitative analysis is summarized in 5.

In order to validate the importance of the stICA method,

a second test was used which performed PCA followed di-

rectly by pixelwise classification. This system is similarly

scored against the top 30 significant hand-drawn ROIs re-

sulting in an average dice coefficient score of 12.9. An ex-

ample of the ROIs extracted are shown in Figure 4 (b), in

this case misaligned ROIs can be specifically observed over

non-active blood vessel regions of the field of view.

A final test was performed in order to investigate how

well stICA performed without the pixelwise classification.

A portion of the resulting ROI set shown in Figure 4 (c).

In order to test this the stICA components were filtered

with smoothing and noise removal techniques in order to

remove as much of the noise in the components as possi-

ble. These filtered components were segmented spatially

and ROI boundaries were extracted. This technique tended

to result in fewer misaligned ROI segments then the PCA

only technique but extracted fewer total ROIs and resulted

in an alignment score of 13.1, which is lower then the case

of stICA followed by classification.

The results of this quantitative analysis are summarized

in Figure 5. ROI extractions were completed multiple times

to account for the performance due to the small deviations

in convergence of the FastICA algorithm. This did lead to a

single trial where both of the extraction methods relying on

stICA underperformed the PCA analysis. The “Matching

score” for these trials were well below the standard error

and this occurrence is determined to be atypical. For the

applications of ROI extraction there are significant bene-

fits to have more ROIs extracted even at the cost of a few

more false-positive areas. As long as the population of mis-

aligned ROIs are not extremely high, researchers can manu-

ally or automatically remove them during subsequent anal-

ysis as the fluorescence traces from these areas will remain

flat throughout the duration of the experiment. Missing an

active region, however, comes at a higher cost since extract-

ing neuronal activity is the main goal of this imaging.

5. Conclusion
This paper presents a novel automated procedure for

axon recognition. To the best of our knowledge, the pro-

posed method is unique and serves as an important com-

puter vision application. A natural flow from Component

extraction to ROI segmentation is discussed, and both qual-

itative and quantitative results are provided. The methods

discussed here are effective at drawing regions of interest
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Figure 5. Extracted ROIs are assessed as being aligned or mis-

aligned with the hand drawn ”ground truth”. The alignment of

the 30 most significant ROIs are assessed by calculating the dice

coefficient. Mean and standard error for four trials of stICA com-

ponents are used due to the performance dependance on random

initialization of the FastICA algorithm. For these trials k = 40,

μ = 0.01, and the patch-gradient neighborhood is 8.

around areas whose function is correlated both in space and

time.

Some of the extracted ROI boundaries still appear to be

overlapping or over-segmented as observed in Figure 4 (a).

This problem is currently handled through automated iden-

tification and merging of the most obvious cases. Further

improvements through a post-processing step involving a

second classification process to reassemble and merge ROIs

with nearly identical fluorescence traces are currently being

investigated. Additional information, such as stICA compo-

nent, ROI orientation, size and distance, may also be lever-

aged as descriptive features.
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