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Abstract

Appearance of individuals across multiple cameras

varies a lot due to illumination and viewpoint changes

making person re-identification a challenging problem.

In this paper, we describe how to model this appearance

variation by using a novel Weighted Brightness Transfer

Function (WBTF). In combination with powerful low-

level features, we show that WBTF leads to large per-

formance improvements by assigning different weights

to different BTFs and combining them accordingly. We

have compared our algorithm on two public benhmark

datasets: VIPeR and CAVIAR4REID dataset, achieving

new state-of-the art performance on both datasets.

1. Introduction

Person re-identification refers to the problem of

identifying the same person across multiple cameras or

across the same camera if the person has previously ex-

ited the camera field-of-view and then reenters it again.

This capability is of immense value in surveillance sit-

uations where the objective is to model long-term ac-

tivities of people to uncover suspicious or anomalous

behavior. However, appearance of the same person

can change drastically across two cameras making re-

identification a challenging problem.

There exists several indirect and direct approaches

to the problem of modeling appearance variability of

objects in general, and more specifically for person

re-identification. Within the context of person re-

identification, several authors have advocated for design

of better image matching features and distance learning

functions to indirectly model the appearance variability.

A high-dimensional signature of texture, gradient and

color features is learnt in [10] which is then projected

into a latent space using Partial Least Squares. Cheng

et al. in [1] propose to use a detailed body parts model

using pictorial structures to localize body parts and then

Figure 1. Person re-identification is a chal-

lenging problem due to the large vari-
ability in appearance across cameras due

to illumination, viewpoint and posture
changes (images from the VIPeR dataset
[3]).

use their visual characteristics for re-identification. In

contrast to feature design approaches, several authors

have proposed the use of feature selection and distance

learning functions to indirectly model appearance vari-

ability. Zheng et al. in [12] describe a Probabilistic Rel-

ative Distance Comparison (PRDC) model that aims to

learn the optimal distance to maximize the matching ac-

curacy. Authors in [4] proposed to discriminatvely se-

lect an ensemble of localized color and texture features

using boosting. RankSVM [9] formulated the problem

of re-identification as a ranking problem within the con-

text of SVM classification paradigm.

As opposed to the above mentioned indirect ap-

proaches, direct approaches model the Brightness

Transfer Functions (BTF) between cameras to transfer

appearance. Porikli [7] and Javed et al. [6] estimate

BTF to transfer appearance between cameras for the

purpose of object tracking. These methods first com-

pute multiple BTFs with equal weight and then rely on

Mean BTF (MBTF) directly or compute BTF subspace

respectively. As opposed to MBTF, Cumulative BTF
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Figure 2. Two examples from VIPeR [3]
that show strong change in appearance

of the same person from camera 1 (first
image) to camera 2 (third image) due to
large changes in illumination conditions.

WBTF-based appearance transfer (middle
image) mitigates these strong illumina-
tion effects.

(CBTF) [8] first accumulates all the observations and

then computes a CBTF to preserve observations that

may be under-represented. However, CBTF approach,

like MBTF approaches, assigns equal weight to all the

observations.

In contrast to MBTF and CBTF, we present a novel

approach that uses a Weighted Brightness Transfer

Function (WBTF) that assigns unequal weights to ob-

servations based on how close they are to test observa-

tions. Observations from the training dataset that are

close in feature space to the test observation are as-

signed higher weights for the purpose of BTF compu-

tation compared to observations that are distant. We

also describe the use of a high-dimensional signature

of color and texture features for the purpose of image

matching. The main contributions of our work are thus

two-fold: 1) A novel WBTF that models appearance

BTF using weights of observations proportional to their

distance in the feature space. 2) A high-dimensional

color and texture signature for image matching. To-

gether, these two contributions have lead to a new

state-of-the art performance on two public benchmark

dataset: VIPeR [3] and CAVIAR4REID [1]. In the

next section, we describe our approach for constructing

WBTF and image matching signature.

2. Weighted Brightness Transfer Function

Given a pair of observationOi andOj corresponding

to the same observation from two cameras Ci and Cj , a

BTF function H
j
i transfers a brightness value Bi in Oi

to its corresponding brightness value Bj in Oj ,

Bj = H
j
i (Bi). (1)

In order to calculate H
j
i , we would need pixel to

pixel correspondences between Oi and Oj , however

this is not possible for person re-identification due to

self-occlusions and viewpoint changes. Therefore, we

employ normalized cumulative histograms of object

brightness values for the computation of H
j
i under the

assumption that the percentage of brightness values less

than or equal to Bi in Oi is equal to the percentage of

brightness values less than or equal to Bj in Oj [6, 5].

Note that object observations Oi and Oj correspond

only to the areas of the image that represent the person.

LetHi andHj be the normalized cumulative brightness

histograms of observationsOi andOj respectively then,

Hi(Bi) = Hj(Bj) = Hj(H
j
i (Bi)). (2)

The BTF function H
j
i can thus be computed as follows,

H
j
i (Bi) = H−1

j (Hi(Bi)), (3)

where H−1 is the inverted cumulative histogram. In

case of a color image, each color channel needs to be

transformed separately. Associated with every training

pair of images, {Oi, Oj}, we now have its BTF H
j
i .

Let OT
i be a test image from cameras Ci. Ad-

ditionally let OT
i (p) and OT

i (p̃) represent a seg-

mentation of OT
i into person(foreground) and non-

person(background) image regions respectively (we de-

fer the description of how we segment an image into

person/non-person regions until Section 2.1). Then let,

DH = {kH
j
i |αk = ψ(OT

i (p̃), Oi(p̃)), αk ≤ δ}, (4)

|DH | = K,

be a set of K BTFs associated with K training images

Oi(p̃) whose background areas are at most δ distance

away in the feature-space from the background areas of

the test image OT
i (p̃), ψ is the bhattacharyya distance

between the feature representations described in Sec-

tion 2.2 and αk is the matching cost. Then a Weighted

BTF (WBTF) is defined as a linear combination of all

the BTFs in DH ,

HWBTF =
K∑

k=1

αk
kH

j
i . (5)

The principal advantage of HWBTF is that it assigns

more weight to the BTF of those images that are closer

to the test image as opposed to assigning equal weight

to all BTFs. We use HWBTF to map illumination from

Ci to Cj and then the rank-1 (other ranks follow analo-

gously) re-identification problem is defined as follows,

arg min
j
ηψ(ÕT

i (p), OT
j (p)) +ψ(ÕT

i (p̃), OT
j (p̃)), (6)

2368



Figure 3. Two examples of segmenting
an image into non-person (second image)
and person (third image) regions.

where the two terms represent the matching cost for

foreground and background of the transformed image

ÕT
i against all the test images OT

j , j = {1, . . . , N} re-

spectively and we use η = 3,K = 5 for our experi-

ments.

2.1. Foreground and Background Estimation

In order to estimate foreground(person) and

background(non-person) regions in an image, we

over-segment it using Normalized Cuts [11] into Si

segments. We make the assumption that the person will

be centered in an image and therefore, we initialize the

foreground model (FSi) using segments that lie in the

center and correspondingly we use the segments at four

image corners to initialize our background model. A

binary label for all the remaining segments can then be

determined as follows,

∆ = (1 − η)
1

E(Si, FSi)
+ η

1

ρ(Si, FSi)
,

P (Si = F ) = 1 if ∆ ≥ ǫ, 0 otherwise, (7)

P (Si = B) = 1 − P (Si = F ), (8)

whereE(Si, F
Si) and ρ(Si, F

Si) are the minimum Eu-

clidean and Bhattarcharya distance between the center

of Si and any of the segments that lie in the foreground

model FSi and between their color histograms respec-

tively. We use a 10-dimensional histogram per color

channel and η = 0.15 for all our experiments.

2.2. Image Representation and Matching

We use a mixture of low-level color and texture fea-

tures similar to [4, 12] as our feature representation.

Specifically, we divide an image into fifteen horizontal

stripes. For each stripe, we compute a 20-dimensional

histogram of RGB, HSV, and YCbCr color features.

Additionally, we also compute a 405-dimensional HOG

feature histogram for each of the RGB color channels

for each stripe. Each image, is thus, represented using a

12 channel high dimensional feature vector (20925 di-

mensions), where each channel is obtained by concate-

nating features across all stripes. During image match-

ing, ψ() computes an average of 12 bhattacharyya dis-

tances between the channels of two images.

3. Experimental Results

We have tested our approach on the two most dif-

ficult public benchmark datasets available for test-

ing re-identification: VIPER and CAVIAR4REID. Re-

identification performance is measured using the cumu-

lative matching characteristic (CMC) curve which rep-

resents the expectation of finding the correct match in

the top n matches. So, a top r matching rate indicates

the percentage of images correctly identified in the top

r from a dataset of p test images. In our experiments,

we use an average of 10 trials to report CMC rates.

3.1. Datasets: VIPeR and CAVIAR for re-id
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Figure 4. From left to right: (a) CMC curve
for VIPeR at p=316 comparing WBTF and

PRDC [12] (b) CMC curve for VIPeR at
p=532 comparing WBTF and PRDC [12]
(c) Comparison of WBTF against CPS

[1] and SDALF [2] on the CAVIAR4REID
database [1].

VIPeR dataset contains 632 corresponding pairs of

images of pedestrians from different viewpoints, illu-

mination and posture conditions [3]. Each image in the

dataset is of 48 × 128 size. CAVIAR4REID [1] con-

tains 72 different individuals in the database, with im-

age sizes ranging from 17 × 39 to 72 × 144, with low

image resolution being the primary challenge for re-

identification. Table 1 and Figures 4 (a, b) presents the

results of our approach on VIPeR dataset as compared

against several existing state-of-the art approaches. It

can be observed that our approach outperforms all the

existing literature that we have tested against. More-

over, the improvement from the previous benchmark

becomes more marked as the number of training sam-

ples decreases from 316(p=316, p is number of test im-
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Methods p(# of test classes) = 316 p = 432 p = 532

r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

Ours(WBTF) 21.99 46.84 59.97 75.95 15.05 35.76 50.81 64.24 13.72 31.77 42.86 57.42

CPS[1] 21.84 46.00 57.21 71.50 - - - - - - - -

SDALF[2] 20.00 38.00 48.5 65.00 - - - - - - - -

PRDC[12] 15.66 38.42 53.86 70.09 12.64 31.97 44.28 59.95 9.12 24.19 34.40 48.55

AdaBoost 8.16 24.15 36.58 52.12 6.83 19.81 29.75 43.06 4.19 12.95 20.21 30.73

L1-Norm 4.18 11.65 16.52 22.37 3.80 9.81 13.94 19.44 3.55 8.29 12.27 17.59

Bhattacharyya 4.65 11.49 16.55 23.83 4.19 10.35 14.19 20.19 3.82 9.08 12.42 17.88

Table 1. Top ranked matching rate (%) on VIPeR. p is the number of classes in the testing set;
r is the rank. Bold numbers represent the best-score in every column.

ages) to 100(p=532). For instance, we report a 20% and

50% improvement at r = 1 for p = 432 and p = 532
respectively as compared to the previous best match-

ing performance. Figure 4(c) present our results on the

CAVIAR4REID dataset compared against CPS [1] and

SDALF [2]. Our approach achieves a significant im-

provement in performance over existing approaches de-

spite the low-resolution of CAVIAR4REID dataset.

3.2. WBTF compared to no appearance model-
ing and MBTF

Figure 5(a) shows re-identification performance with

and without using Weighted BTF (WBTF) for appear-

ance modeling and Figure 5(b) compares WBTF and

Mean BTF (MBTF) at different rank positions on the

VIPeR dataset. It can be observed that there is a signif-

icant performance drop-off if we don’t use appearance

modeling and that WBTF outperforms MBTF.
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Figure 5. (a) Difference in performance be-
tween WBTF and no appearance model-

ing. (b) Difference in performance be-
tween WBTF and MBTF for rank=1, 5, 10,
and 20 on the VIPeR dataset with p = 316.

4. Conclusions

We have presented a novel approach that uses a

Weighted BTF to transfer appearance information be-

tween camera views. The key advantage of WBTF is

that it assigns higher weight to BTFs of training ob-

servations that are closer to the test observation, as op-

posed to assigning equal weight to all the BTFs. Our

approach has achieved new state-of-the art performance

on VIPeR and CAVIAR4REID datasets.
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