Class 5: Deformable Part-Based Models

Rogerio Feris, Feb 27, 2014
EECS 6890 – Topics in Information Processing
Spring 2014, Columbia University
What we have seen so far

Low-Level Representation: Feature Detection and Description

Classical Descriptors: SIFT and SURF

Modern Descriptors for Real-Time Applications: FAST, BRISK, ...

Check the resources page for state-of-the-art implementations:
http://rogerioferis.com/VisualRecognitionAndSearch/Resources.html
What we have seen so far

Mid-level Representation: feature coding and pooling

Classical Bag-of-Word Models

Modern higher-level representations:
Fisher vector and super-vector encoding, Sparse Coding, ...

[K. Chatfield et al, The devil is in the details: an evaluation of recent feature encoding methods, BMVC 2011]
Pooling is great to achieve invariance to image transformations, more compact representations, and better robustness to noise and clutter.

But important spatial relationship of image patches may be lost due to pooling.

Example: bag-of-words
Encoding structure

Bag of words

Structureless

Deformable Part Models [P. Felzenszwalb et al, PAMI 2010]

Rigid

Dalal and Triggs, CVPR 2005
Plan for Today

- Part-based Models
 → Focus on Deformable Part Models

- Project Proposal Proposal Presentations
History of Part and Structure Approaches

- Fischler & Elschlager 1973
- Yuille ‘91
- Brunelli & Poggio ‘93
- Lades, v.d. Malsburg et al. ‘93
- Cootes, Lanitis, Taylor et al. ‘95
- Amit & Geman ‘95, ‘99
- Perona et al. ‘95, ‘96, ‘98, ’00, ’03, ’04, ’05
- Felzenszwalb & Huttenlocher ’00, ’04, ’08
- Crandall & Huttenlocher ’05, ’06
- Leibe & Schiele ’03, ’04

- Many papers since 2000

Slide credit: Rob Fergus
Why Parts?

Useful to handle intra-class variation

Objects may be globally different, but have parts in common

Slide credit: Rob Fergus
Why Parts?

Useful to handle slight variations in object pose

[Heisele et al, CVPR 2001]
Why Parts?

Useful to handle occlusions

[P. Felzenszwalb et al, PAMI 2010]
Why Parts?

- Difficult to handle low-resolution
- Models can be more complex and more computationally expensive
- May throw away important image information present in global representations
Part-based Models

Different Connectivity Structures

Fergus et al. ’03
Fei-Fei et al. ’03

Crandall et al. ’05
Fergus et al. ’05

Crandall et al. ’05
Felzenszwalb & Huttenlocher ’00

a) Constellation

b) Star shape

c) k-fan ($k = 2$)
d) Tree

e) Bag of features

Csurka ’04
Vasconcelos ’00

f) Hierarchy

Bouchard & Triggs ’05

g) Sparse flexible model

Carneiro & Lowe ’06

From [Carneiro & Lowe, ECCV 2006]
Part-based Models

Different Connectivity Structures

Constellation Model [Fergus et al, 2003]

Efficient Pictorial Structures [Felzenszwalb & Huttenlocher, 2000]
Part-based Models

Different Connectivity Structures

Implicit Shape Model [Leibe et al, 2004]

Poselets [Bourdev et al, 2009]
Object Detection with Deformable Part-based Models (DPM) [P. Felzenszwalb et al, PAMI 2010]

PASCAL VOC "Lifetime Achievement" Prize in 2010.
Object Detection: Learning Stage

Positive Samples

Negative Samples

Learning

Object Model

Root Parts Deformation
Object Detection: Test Time

Click for sliding window animation

- Sliding Window Approach

- Model is applied at every position/scale of the image to check the presence of the object
Deformable Part-Based Models

Key Ingredients:

- Powerful HOG (Histograms of Oriented Gradients) features
- Detection based on Deformable Parts
- Latent SVM Training
- Multiple Components
HOG Features

Histograms of Oriented Gradients (HOG)

- Bin gradients into 9 orientations over 8x8 pixel neighborhoods & normalize
 - Dalal & Triggs CVPR05

Slide credit: Deva Ramanan
HOG Features

Histograms of Oriented Gradients (HOG)

- Split detection window into non-overlapping pixel regions called cells (e.g., 8x8 pixels)
- Compute histogram of oriented gradients in each cell (e.g., 9 orientation bins)
- Group cells into larger spatial blocks and contrast-normalize each block separately
- Final feature descriptor is the concatenation of histograms for all overlapping blocks over the detection window
HOG Features

Cell = 8x8 pixels
Histograms of gradients = 9 orientation bins
Block = 2x2 cells

9x4 = 36 dimensions per cell
VLFeat HOG Implementation
http://www.vlfeat.org/overview/hog.html

```matlab
cellSize = 8;
hog = vl_hog(im, cellSize, 'verbose');
```

- More parameters available (orientation binning, ...)
- Both Dalal&Triggs and UoCTTI (DPM) versions available
HOG Features

Feature pooling (histograms) inside cells improves robustness against small object deformations.

Fine scale derivatives (no smoothing) and fine orientation binning (e.g., 9 bins) improve performance.

Local contrast normalization is essential for good performance (for better invariance to illumination, shadowing, ...)

The DPM implementation uses a slightly different HOG representation than [Dalal&Triggs 2005]: both signed and unsigned gradients are taken into account and dimensionality reduction is performed.

Filters are rectangular templates defining weights for features.

Score is dot product of filter and subwindow of HOG pyramid.

Score of F at position p is $F \cdot \phi(p, H)$

$\phi(p, H) = \text{HOG features in subwindow specified by } p$

Slide credit: Pedro Felzenszwalb
[Dalal and Triggs, CVPR 2005]: HOG filter is learned using a linear SVM

At test time, filter is convolved with feature map
Deformable Part-based Models

Each model has a global template + part templates. Models are fully trained from bounding boxes alone (without specification of part locations)
Scoring an Object Hypothesis

- Pick a hypothesis Z (location of root + location of parts)

Multi-Scale Model: resolution of the part filters is twice the resolution of the root

$$z = (p_0, ..., p_n)$$

p_0: location of root

$p_1, ..., p_n$: location of parts

Score is sum of filter scores minus deformation costs

Slide credit: Pedro Felzenszwalb
Scoring an Object Hypothesis

The score of a hypothesis is the sum of filter scores minus the sum of deformation costs

\[
\text{score}(p_0, \ldots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i, dy_i, dx_i^2, dy_i^2)
\]

Hypothesis \(z \): root location + part locations

Filters (root + parts)

Part Deformation weights

Subwindow features

Displacements with respect to part anchor

Concatenation of filter and deformation weights

Concatenation of subwindow features and displacements

\[
\text{score}(z) = \beta \cdot \Psi(H, z)
\]
Detection

- Sliding window approach

- For each window location in the pyramid, compute score based on best placement of parts:

\[
\text{score}(p_0) = \max_{p_1, \ldots, p_n} \text{score}(p_0, \ldots, p_n)
\]

- High scoring root locations define detections

- Generalized distance transforms are used to compute the best placement of parts as a function of root location (i.e., the computation of the score above)
Detection

Example: best-scoring displacements for the “head” part

Response of filter in l-th pyramid level:

\[R_l(x, y) = F \cdot \phi(H, (x, y, l)) \]

Transformed Response:

\[D_l(x, y) = \max_{dx, dy} \left(R_l(x + dx, y + dy) - d_i \cdot (dx, dy, dx^2, dy^2) \right) \]

“Default” anchor head location

- Computed in linear time (distance transform)
- Smart Blur according to part deformation
Detection

Slide credit: Pedro Felzenszwalb
Matching Result

(after non-maximum suppression)

~1 second to search all scales on a multi-core computer
Latent SVM Learning

Positive Samples

Negative Samples

Learning

Object Model

Root Parts Deformation
Latent SVM Learning

Our classifier has the form:

$$f_\beta(x) = \max_{z \in \mathcal{Z}(x)} \beta \cdot \Phi(x, z)$$

\(\beta\) are model parameters
\(z\) are latent values

Training data \(D = (\langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle)\), \(y_i \in \{ -1, 1 \}\)

We would like to find \(\beta\) such that: \(y_i f_\beta(x_i) > 0\)

Minimize

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i f_\beta(x_i))$$
Semi-Convexity

- Maximum of convex functions is convex

\[f_\beta(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z) \] is convex in \(\beta \)

- \(\max(0, 1 - y_i f_\beta(x_i)) \) is convex for negative examples

\[
L_D(\beta) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i f_\beta(x_i))
\]

Convex if latent values for positive examples are fixed
Latent SVM Training:

Initialize weights (beta) and iterate:

1) **Relabel positive examples**: fix beta and pick best z (latent variables) for each positive example

2) **Optimize Beta**: fix z and optimize beta (convex optimization problem)

Hard example mining during training is essential for improved performance
Multiple Components

- Multiple models (components) are utilized to deal with significant appearance variations that cannot be tackled with deformable parts (e.g., frontal view and side-view).

- Component label is added as a latent variable (in addition to part locations).

Car model:

Component 1

Component 2
Latent SVM Training: Initialization

Initializing Beta (concatenation of filter and deformation weights):

- For a k-component model:
 - Split examples into k sets based on bounding box aspect ratio

- Learn k root filters using standard SVMs

- Initialize parts by selecting patches from root filters:
 - Sub-windows with strong coefficients
 - Interpolate to get higher resolution filters
 - Initialize spatial model using fixed spring constants

Slide credit: Fei-Fei Li
Cat Detections

high scoring true positives

high scoring false positives
(not enough overlap)
Person Detections

high scoring true positives

high scoring false positives
(not enough overlap)
Car Detections

high scoring true positives

high scoring false positives
More Example Results

horse

sofa

bottle
More Example Results

Zebra detector: credit to Guangnan & Maja
Comparison of Car Models

class: car, year 2006

precision
recall

1 Root (0.48)
2 Root (0.58)
1 Root+Parts (0.55)
2 Root+Parts (0.62)
2 Root+Parts+BB (0.64)
Cascade DPM Detection

- Goal: Improve efficiency of DPM

- Hierarchy of models where the i-th model is defined by the first i parts from the original model

- Intuition: when detecting people, we might evaluate the score of the head part at each possible location and decide we do not need to evaluate the torso part for most locations in the image

Positions (in white) where a particular part appearance model was evaluated at the scale of the bicycle detection. The images are shown in “cascade order” from left to right and top to bottom
http://people.cs.uchicago.edu/~rbg/latent/

Stable Release Version (Includes Cascade Detection)

Discriminatively trained deformable part models

Version 5 (Sept. 5, 2012)
Sparselets

- Goal: Improve efficiency of DPM for large number of classes
- GPU Implementation + Sparse coding of Part Filters

See Video Demo at
http://www.eecs.berkeley.edu/~song/sparselets/
Hashing Parts

Thomas Dean et al, Fast, Accurate Detection of 100,000 Object Classes on a Single Machine, CVPR 2013 (Best paper award)
Towards Richer Hierarchical Models

- Hierarchical Models – parts defined as a function of subparts
- Stochastic Image Grammars
Towards Richer Hierarchical Models

- Hierarchical Models – parts defined as a function of subparts